Acknowledgement
The research described in this paper was financially supported by the University of Malayer.
References
- Ali, M.S., Leyne, E., Saifuzzaman, M. and Mirza, M.S. (2018), "An experimental study of electrochemical incompatibility between repaired patch concrete and existing old concrete", Constr. Build. Mater., 174, 159-172. https://doi.org/10.1016/j.conbuildmat.2018.04.059.
- Balabanic, G. (2011), "3D numerical modelling of steel corrosion in concrete structures", 53, 4166-4177. https://doi.org/10.1016/j.corsci.2011.08.026.
- Barkey, D.P. (2004), "Corrosion of steel reinforcement in concrete adjacent to surface repairs", Mater. J., 101(4), 266-272. https://doi.org/10.14359/13359.
- Bertolini, L. and Redaelli, E. (2009), "Throwing power of cathodic prevention applied utilizing sacrificial anodes to partially submerged marine reinforced concrete piles: Results of numerical simulations", Corros. Sci., 51(9), 2218-2230. https://doi.org/10.1016/j.corsci.2009.06.012.
- Castro, P., Pazini, E., Andrade, C. and Alonso, C. (2003), "Macrocell activity in slightly chloride-contaminated concrete induced by reinforcement primers", Corros., 59(6), 535-546. https://doi.org/10.5006/1.3277585
- Cao, C., Cheung, M.M.S. and Chan, B.Y.B. (2013), "Modelling of interaction between corrosion-induced concrete cover crack and steel corrosion rate", Corros. Sci., 69(24), 97-109. https://doi.org/10.1016/j.corsci.2012.11.028.
- Chen, H.P. and Nepal, J. (2020), "Load bearing capacity reduction of concrete structures due to reinforcement corrosion", Struct. Eng. Mech., 75(4), 455-464. https://doi.org/10.12989/sem.2020.75.4.455.
- Cheung, M.M.S. and Cao, C. (2013), "Application of cathodic protection for controlling macrocell corrosion in chloride contaminated RC structures", Constr. Build. Mater., 45, 199-207. https://doi.org/10.1016/j.conbuildmat.2013.04.010.
- Christodoulou, C., Goodier, C., Austin, S., Webb, J. and Glass, G.K. (2013), "Diagnosing the cause of incipient anodes in repaired reinforced concrete structures", Corros. Sci., 69, 123-129. https://doi.org/10.1016/j.corsci.2012.11.032.
- Chuanqing, F., Rui, H. and Kejin, W. (2023), "Influences of corrosion degree and uniformity on bond strength and cracking pattern of cement mortar and PVA-ECC", J. Mater. Civil Eng., 35(6), 1943-1953. https://doi.org/10.1061/JMCEE7.MTENG14846.
- Gulikers, J. (2005), "Theoretical considerations on the supposed linear relationship between concrete resistivity and corrosion rate of steel reinforcement", Mater. Corros., 56(6), 393-403. https://doi.org/10.1002/maco.200403841.
- Gulikers, J. and Raupach, M. (2006), "Numerical models for the propagation period of reinforcement corrosion-Comparison of a case study calculated by different researchers", Mater. Corros., 57(8), 618-627. https://doi.org/10.1002/maco.200603993.
- Ge, J. and Isgor, O.B. (2007), "Effects of Tafel slope, exchange current density and electrode potential on the corrosion of steel in concrete", Mater. Corros., 58(8), 573-582. https://doi.org/10.1002/maco.200604043.
- Ghiasi, V. (2012), "Effects of weak rock geomechanical properties on tunnel stability", Ph.D. Dissertation, Universiti Putra Malaysia, Selangor, Malaysia.
- Ghiasi, V. and Eskandari, S. (2023), "Comparing a single pile's axial bearing capacity using numerical modeling and analytical techniques", Result. Eng., 17, 100893. https://doi.org/10.1016/j.rineng.2023.100893.
- Ghiasi, V. and Farzan, A. (2019), "Numerical study of the effects of bed resistance and groundwater conditions on the behavior of geosynthetic reinforced soil walls", Arab. J. Geosci., 12, 729-738. https://doi.org/10.1007/s12517-019-4947-2.
- Ghods, P., Isgor, O.B. and Pour-Ghaz, M. (2008), "Experimental verification and application of a practical corrosion model for uniformly depassivated steel in concrete", Mater. Struct., 41(7), 1211-1223. https://doi.org/10.1617/s11527-007-9320-3.
- Guo, B. and Ou, J. (2015), "Numerical simulation of the impressed current cathodic protection system for a reinforced concrete structure", 2015 Fifth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), Qinhuangdao, China, September.
- Hassanein, A.M., Glass, G.K. and Buenfeld, N.R. (2002), "Protection current distribution in reinforced concrete cathodic protection systems", Cement Concrete Compos., 24(1), 159-167. https://doi.org/10.1016/S0958-9465(01)00036-1.
- Hiemer, F., Jakob, D., Kessler, S. and Gehlen, C. (2018), "Chloride induced reinforcement corrosion in cracked and coated concrete: From experimental studies to time-dependent numerical modeling", Mater. Corros., 69(11), 1526-1538. https://doi.org/10.1002/maco.201810148.
- Hornbostel, K., Angst, U.M., Elsener, B., Larsen, C.K. and Geiker, M.R. (2016), "Influence of mortar resistivity on the rate-limiting step of chloride-induced macro-cell corrosion of reinforcing steel", Corros. Sci., 110, 46-56. https://doi.org/10.1016/j.corsci.2016.04.011.
- Hornbostel, K. (2015), "The role of concrete resistivity in chloride- induced macro-cell corrosion of reinforcement", Ph.D. Dissertation, Norwegian University of Science and Technology, Trondheim, Norway.
- Hornbostel, K., Angst, U.M.B., Elsener, C., Larsen, K. and Geiker, M.R. (2015), "On the limitations of predicting the ohmic resistance in a macro-cell in mortar from bulk resistivity measurements", Cement Concrete Res., 76, 147-158. http://doi.org/10.1016/j.cemconres.2015.05.023.
- Hornbostel, K., Larsen, C.K. and Geiker, M.R. (2013), "Relationship between concrete resistivity and corrosion rate - A literature review", Cement Concrete Compos., 39, 60-72. http://doi.org/10.1016/j.cemconcomp.2013.03.019.
- Huang, L., Jin, X., Fu, C., Ye, H. and Dong, X. (2020), "Stochastic characteristics of reinforcement corrosion in concrete beams under sustained loads", Comput. Concrete, 25(5), 447-460. https://doi.org/10.12989/cac.2020.25.5.447.
- Isgor, O.B. and Razaqpur, A.G. (2006), "Modelling steel corrosion in concrete structures", Mater. Struct., 39(3), 291-302. https://doi.org/10.1007/s11527-005-9022-7.
- Jaggi, S., Bohni, H. and Elsener, B. (2007), "Macrocell corrosion of steel in concrete - Experiments and numerical modelling", Corrosion of Reinforcement in Concrete: Mechanisms, Monitoring, Inhibitors and Rehabilitation Techniques, CRC Press, Boca Raton, FL, USA.
- Kaesche, H. (2012), Corrosion of Metals: Physicochemical Principles and Current Problems, Springer Science & Business Media, University of Erlangen, Nurenberg, Germany.
- Kazemian, S., Prasad, A. and Huat, B.B.K. (2012), "Effects of cement-sodium silicate system grout on tropical organic soils", Arab. J. Sci. Eng., 37, 2137-2148. https://doi.org/10.1007/s13369-012-0315-1.
- Kim, C.Y. and Kim, J.K. (2008), "Numerical analysis of localized steel corrosion in concrete", Constr. Build. Mater., 22(6), 1129-1136. https://doi.org/10.1007/978-94-007-0677-4_2.
- Laurens, S., Henocq, P., Rouleau, N., Deby, F., Samson, E., Marchand, J. and Bissonnette, B. (2016), "Steady-state polarization response of chloride-induced macrocell corrosion systems in steel reinforced concrete - Numerical and experimental investigations", Cement Concrete Res., 79, 272-290. https://doi.org/10.1016/j.cemconres.2015.09.021.
- Lozinguez, E., Barthelemy, J.F., Bouteiller, V. and Desbois, T. (2018), "Contribution of sacrificial anode in reinforced concrete patch repair: Results of numerical simulations", Constr. Build. Mater., 178, 405-417. https://doi.org/10.1016/j.conbuildmat.2018.05.063.
- Muehlenkamp, E., Koretsky, B.M.D. and Westall, J.C. (2005), "Effect of moisture on the spatial uniformity of cathodic protection of steel in reinforced concrete", Corros., 61(6), 519-533. https://doi.org/10.5006/1.3278188.
- Ayinde, O.O., Zuo, X.B. and Yin, G.J. (2019), "Numerical analysis of concrete degradation due to chloride-induced steel corrosion", Adv. Concrete Constr., 7(4), 203-210. https://doi.org/10.12989/acc.2019.7.4.203.
- Page, C.L. )1982), "Aspects of the electrochemistry of steel in concrete", Nat., 297, 109-115. https://doi.org/10.1038/297109a0.
- Pour-Ghaz, M., Isgor, O.B. and Ghods, P. (2009), "The effect of temperature on the corrosion of steel in concrete. Part 1: Simulated polarization resistance tests and model development", Corros. Sci., 51(2), 415-425. https://doi.org/10.1016/j.corsci.2008.10.034.
- Pour-Ghaz, M., Burkan Isgor, O. and Ghods, P. ( 2009), "The effect of temperature on the corrosion of steel in concrete. Part 2: Model verification and parametric study", Corros. Sci., 51(2), 426-433. https://doi.org/10.1016/j.corsci.2008.10.036.
- Raupach, M. and Gulikers, J. (2001), "Investigations on cathodic control of chloride-induced reinforcement corrosion", Mater. Corros., 52(10), 766-770. https://doi.org/10.1002/1521-4176(200110)52:10<766::AID-MACO766>3.0.CO;2-S
- Raupach, M. and Buttner, T. (2014), Concrete Repair to EN 1504: Diagnosis, Design, Principles and Practice, CRC Press, Boca Raton, FL, USA.
- Redaelli, E., Bertolini, L., Peelen, W. and Polder, R. (2006), "FEM-models for the propagation period of chloride induced reinforcement corrosion", Mater. Corros., 8, 628-635. https://doi.org/10.1002/maco.200603994.
- Recommendation, R.D. (1994), "Draft recommendation for repair strategies for concrete structures damaged by reinforcement corrosion", Mater. Struct., 27)171(, 415-436. https://doi.org/10.1007/BF02473446.
- Rui, H., Hongyan, M., Rezwana, B.H., Chuanqing, F., Xianyu, J. and Jiahao, H. (2018), "Determining porosity and pore network connectivity of cement-based materials by a modified noncontact electrical resistivity measurement: Experiment and theory", Mater. Des., 156, 82-92. https://doi.org/10.1016/j.matdes.2018.06.045.
- Rui, H., Chuanqing, F., Hongyan, M. and Hailong, Y. (2020), "Prediction of effective chloride diffusivity of cement paste and mortar from microstructural features", J. Mater. Civil Eng., 32(8), 04020211-04020221. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003288.
- Rui, H., Hailong, Y., Hongyan, M. and Chuanqing, F. (2019), "Correlating the chloride diffusion coefficient and pore structure of cement-based materials using modified noncontact electrical resistivity measurement", J. Mater. Civil Eng., 31(3), 04019006-040190018. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002616.
- Sagues, A.A. and Kranc, S.C. (1993), "On the determination of polarization diagrams of reinforcing steel in concrete", Corros., 48(8), 624-633. https://doi.org/10.5006/1.3315982.
- Shirkhani, A., Davarnia, D. and Farahmand Aza, B. (2019), "Prediction of bond strength between concrete and rebar under corrosion using ANN", Comput. Concrete, 23(4), 273-279. https://doi.org/10.12989/cac.2019.23.4.273.
- Soleimani, S., Ghods, P., Isgor, O.B. and Zhang, J. (2010), "Modeling the kinetics of corrosion in concrete patch repairs and identification of governing parameters", Cement Concrete Compos., 32(5), 360-368. https://doi.org/10.1016/j.cemconcomp.2010.02.001.
- Warkus, J., Brem, M. and Raupach, M. (2006), "BEM-models for the propagation period of chloride induced reinforcement corrosion", Mater. Corros., 57(8), 636-641. https://doi.org/10.1002/maco.200603995.
- Warkus, J. and Raupach, M. (2010), "Modelling of reinforcement corrosion - geometrical effects on macrocell corrosion", Mater. Corros., 61(6), 494-504. https://doi.org/10.1002/maco.200905437.
- Warkus, J. and Raupach, M. (2008), "Numerical modelling of macrocells occurring during corrosion of steel in concrete", Mater. Corros., 59(2), 122-130. https://doi.org/10.1002/maco.200905437.
- Warkus, J., Raupach, M. and Gulikers, J. (2006), "Numerical modelling of corrosion - Theoretical backgrounds", Mater. Corros., 57(8), 614-617. https://doi.org/10.1002/maco.200603992.
- Valipour, M., Shekarchi, M. and Ghods, P. (2016), "Comparative studies of experimental and numerical techniques in measurement of corrosion rate and time-to-corrosion-initiation of rebar in concrete in marine environments", Cement Concrete Compos., 48, 98-107. https://doi.org/10.1016/j.cemconcomp.2013.11.001.
- Yang, B., Yu, L., Wu, M. and Li, B. (2014), "Practical model for predicting corrosion rate of steel reinforcement in concrete structures", Constr. Build. Mater., 54, 385-401. https://doi.org/10.1016/j.conbuildmat.2013.12.046.
- Ying-shu, L.F.Y. and Yan-hong, G.O.M. (2009), "Theoretical models of corrosion rate of steel bars embedded in concrete", J. South China Univ. Technol., 37, 83-88.