DOI QR코드

DOI QR Code

심부 시추코어 실험실 분석자료와 탄성파 탐사자료 통합 분석을 통한 대한해협 천부 퇴적층 임피던스 도출

P-Impedance Inversion in the Shallow Sediment of the Korea Strait by Integrating Core Laboratory Data and the Seismic Section

  • 정순홍 (한국지질자원연구원 기후변화대응연구본부) ;
  • 이광수 (한국지질자원연구원 해저지질에너지연구본부) ;
  • 손우현 (한국지질자원연구원 해저지질에너지연구본부) ;
  • 김길영 (한국지질자원연구원 해저지질에너지연구본부) ;
  • 유동근 (한국지질자원연구원 해저지질에너지연구본부) ;
  • 최윤석 (한국지질자원연구원 해저지질에너지연구본부)
  • Snons Cheong (Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Gwang Soo Lee (Marine Geology & Energy Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Woohyun Son (Marine Geology & Energy Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Gil Young Kim (Marine Geology & Energy Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Dong Geun Yoo (Marine Geology & Energy Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Yunseok Choi (Marine Geology & Energy Division, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2023.07.03
  • 심사 : 2023.08.23
  • 발행 : 2023.08.31

초록

해저지층의 지질특성을 파악하는 것은 지구과학 및 공학에서 중요한 과업으로 신뢰도 높은 탐사자료를 확보하는 경우 가능하다. 대한민국 남동해역 대한해협 천부 지층의 특성을 파악하기 위하여 심부 시추 지층물성 실험실 분석자료와 탄성파 탐사자료를 확보하였고, 이를 통합 분석하였다. 해저면 심도 200 m 하부까지 심부 시추코어를 회수하여 천부 지층 탄성파 음파속도 로그를 얻었고, 탄성파 단면과 대비하였다. 지층 음파속도 로그와 시간 영역 탄성파 자료는 시간-심도 변환을 수행하여 상관성이 15%에서 45%로 증가하였다. 탄성파 임피던스 초기모형을 설정하고 모형기반, 대역제한 및 산재쐐기 역산을 각각 수행하여 결과를 비교하였다. 도출된 탄성파 임피던스는 천부 지층 내부 퇴적층이 우세한 영역과 미고결 영역에서 변화되는 양상을 보였다. 본 연구에서 수행된 음파 임피던스 역산 기법은 향후 지층 물성분석 로그자료와 탄성파자료의 추가 확보 시 통합 분석을 위한 프레임워크로, 임피던스 분포 단면은 해저면 단층 규명과 천부가스 누출 탐지 등에 활용 가능하다. 국내 해양 심부 시추는 이산화탄소 저장 후보지 특성 파악과 자원 부존 평가 등을 목적으로 지속 추진되고 있으므로 통합 역산의 지구물리 분야 적용 가치가 높아질 것으로 기대된다.

In geoscience and engineering the geological characteristics of sediment strata is crucial and possible if reliable borehole logging and seismic data are available. To investigate the characteristics of the shallow strata in the Korea Strait, laboratory sonic logs were obtained from deep borehole data and seismic section. In this study, we integrated and analyzed the sonic log data obtained from the drilling core (down to a depth of 200 m below the seabed) and multichannel seismic section. The correlation value was increased from 15% to 45% through time-depth conversion. An initial model of P-wave impedance was set, and the results were compared by performing model-based, band-limited, and sparse-spike inversions. The derived P-impedance distributions exhibited differences between sediment-dominant and unconsolidated layers. The P-impedance inversion process can be used as a framework for an integrated analysis of additional core logs and seismic data in the future. Furthermore, the derived P-impedance can be used to detect shallow gas-saturated regions or faults in the shallow sediment. As domestic deep drilling is being performed continuously for identifying the characteristics of carbon dioxide storage candidates and evaluating resources, the applicability of the integrated inversion will increase in the future.

키워드

과제정보

본 연구는 한국지질자원연구원 주요사업인 "3D 해저 정밀영상화를 위한 복합 탄성파 탐사 및 실규모 고분해능 처리기술 개발(23-3312)"과제와 "CO2 지중저장소 저장효율 향상 및 안전성 평가 기술 개발(23-3413)"과제의 일환으로 수행되었습니다.

참고문헌

  1. Barnes, C., and Charara, M., 2009, The domain of applicability of acoustic full-waveform inversion for marine seismic data, Geophysics, 74(6), WCC91-WCC103. https://doi.org/10.1190/1.3250269
  2. Brown, A. R., 2011, Interpretation of three-dimensional seismic data. Society of Exploration Geophysicists and American Association of Petroleum Geologists. https://store.aapg.org/detail.aspx?id=1025
  3. Castagna, J. P., and Backus, M. M., 1993, Offset-dependent reflectivity: Theory and practice of AVO analysis, Society of Exploration Geophysicists Investigations in Geophysics, 8, 3-36. https://books.google.co.kr/books/about/Offset_dependent_Reflectivity.html?id=qmsZAQAAIAAJ&redir_esc=y https://doi.org/10.1190/1.9781560802624
  4. Cheong, S., Kim, Y., Kim, B., Koo, N., and Lee, H., 2013, Amplitude variation analysis for deep sea seismic data in the Ulleung Basin, East Sea, Geophysics and Geophysical Exploration, 16(3), 163-170 (In Korean with English abstract). doi: 10.7582/GGE.2013.16.3.163
  5. Chough, S. K., and Barg, E., 1987, Tectonic history of Ulleung basin margin, East Sea (Sea of Japan), Geology, 15(1), 45-48. https://doi.org/10.1130/0091-7613(1987)15<45:THOUBM>2.0.CO;2
  6. Ellis, D. V., and Singer, J. L., 2007, Well logging for earth scientists, Vol. 692, Dordrecht: Springer. https://www.scirp.org/(S(351jmbntvnsjt1aadkozje))/reference/referencespapers.aspx?referenceid=2144492
  7. Hampson, D., and Russell, B. H., 1992, Post-stack seismic modeling, processing, and inversion: Strata software documentation, Hampson-Russell Software Services Ltd. https://www.crewes.org/Documents/ResearchReports/1993/1993-31.pdf
  8. Huh, S., 2006, Investigation method and distribution of marine minerals in EEZ, In Proceedings of the conference on Efficient management of EEZ marine resources, 1-26 (In Korean with English abstract).
  9. Hwang, S., and Lee, S., 1999, Application of geophysical well logging to fracture identification and determination of in-situ dynamic elastic constants, In Proceedings of the Conference on Geophysics and Geophysical Exploration, 156-175 (In Korean with English abstract). https://koreascience.kr/article/CFKO199907921825324.page
  10. Jang, S., Sunwoo, D., Yang, D., Suh, S. Y., and Chung, B. H., 2001, Korea offshore seismic data processing for gas detection, Geophysics and Geophysical Exploration, 4(4), 115-123 (In Korean with English abstract).
  11. KIGAM, 2021, Development of the integrated geophysical survey and real-scale data processing technologies for 3D high-resolution imaging of the marine subsurface, Research Report GP2020-023-2021 of KIGAM (In Korean with English abstract).
  12. Kim, G., and Chung, B., 2005, Seismic AVO analysis, AVO modeling, AVO inversion for understanding the gas-hydrate structure, In Proceedings of the Conference on The Korean Society for New and Renewable Energy, 643-646 (In Korean with English abstract).
  13. Kim, G. Y., 2018, History of deep drilling and future plan, In Proceedings of the Conference on The Korean Society of geology, 32p. (In Korean with English abstract).
  14. Kim, H. J., Joo, H. T., Lee, C., Lim, J., Han, S., and Lee, E., 2008, Interpretation of physical properties of hydrate-bearing structure using acoustic impedance recovery, KIOST report (In Korean with English abstract).
  15. Kim, H. J., Joo, H. T., Na, J. H., Han, S. J., Yoo, E., and Kwon, M., 2013, Suggestions for deep drilling to investigate tectonic evolution of the East Sea, KIOST report (In Korean with English abstract).
  16. Kim, I. S., and Park, K. P., 2007, The status of Gashydrate drilling campaign 2007 in Korea, In Proceedings of the Conference on The Korean Society for New and Renewable Energy, 557-559 (In Korean with English abstract).
  17. Kim, Y., Lee, K., Jo, S., Kim, M., Kim, J., and Park, M., 2012, A preliminary evaluation on CO2 storage capacity of the southwestern part of Ulleung Basin, Offshore, East Sea, Economic and Environmental Geology, 45(1), 41-48 (In Korean with English abstract). doi: 10.9719/EEG.2012.45.1.041
  18. Lee, G. H., Kim, B., Chang, S. J., Huh, S., and Kim, H. J., 2004a, Timing of trap formation in the southwestern margin of the Ulleung Basin, East Sea (Japan Sea) and implications for hydrocarbon accumulations, Geosciences Journal, 8(4), 369-380. doi: 10.1007/BF02910473
  19. Lee, G., Yoo, D., Hong, S., Kim, S., and Kim, G., 2020, Deep drilling research for understand the characteristics of the submarine faults, In Proceedings of the Conference on The Korean Society of geology, 121p. (In Korean with English abstract).
  20. Lee, H. Y., Kim, M. J., and Park, M., 2015, Seismic data processing and inversion for characterization of CO2 storage prospect in Ulleung Basin, East Sea, Economic and Environmental Geology, 48(1), 25-39 (In Korean with English abstract). https://www.kseeg.org/journal/view.html?spage=25&volume=48&number=1 https://doi.org/10.9719/EEG.2015.48.1.25
  21. Lee, J., Choi, S., Kim, J., and Choi, W., 2004b, Case study of fault fracture zone analysis using offshore seismic exploration technique, In Proceedings of the Conference on Korean Geotechnical Society, 38-49 (In Korean with English abstract).
  22. Lee, M. W., and Collett, T. S., 2008, Integrated analysis of well logs and seismic data to estimate gas hydrate concentrations at Keathley Canyon, Gulf of Mexico, Marine and Petroleum Geology, 25(9), 924-931. https://doi.org/10.1016/j.marpetgeo.2007.09.002
  23. Ma, Y. Z., Gomez, E., and Luneau, B., 2017, Integration of seismic and well-log data using statistical and neural network methods, The Leading Edge, 36(4), 324-329. doi: 10.1190/tle36040324.1
  24. Min, G., and Park, Y., 1997, Sedimentary history and Tectonics in the Southeastern Continental Shelf of Korea based on high resolution shallow seismic data, The Korean Journal of Petroleum Geology, 5(1), 1-8 (In Korean with English abstract). https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE09581262
  25. Morozov, I. B., and Ma, J., 2009, Accurate poststack acoustic-impedance inversion by well-log calibration, Geophysics, 74(5), R59-R67. doi: 10.1190/1.3170687
  26. Park, K., Kim, D., Lee, G., Bae, S., and Kim, G. Y., 2015a, Implementation of acoustic properties measurement system based on LabVIEW using PXI for marine sediment, Journal of the Korean Society for Marine Environment and Energy, 18(3), 216-222 (In Korean with English abstract). doi: 10.7846/JKOSMEE.2015.18.3.216
  27. Park, Y. J., Kang, N. K., Yi, B. Y., and Yoo, D. G., 2015b, Origin and distribution of cut and fill structures in the Southwestern margin of Ulleung basin, East Sea, Geophysics and Geophysical Exploration, 18(2), 39-53 (In Korean with English abstract). doi: 10.7582/GGE.2015.18.2.039
  28. Russell, B., and Hampson, D., 2006, The old and the new in seismic inversion, CSEG Recorder, 31(10), 5-11. https://csegrecorder.com/articles/view/the-old-and-the-new-in-seismic-inversion
  29. Schuster, G. T., 2017, Seismic inversion. Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560803423
  30. Shin, K., Yoo, K., Kim, K., and Um, C., 1997, 3D seismic data interpretation of the Gorae II area, BlockVI-1, Offshore Southeast Korea, The Korean Journal of Petroleum Geology, 5(1), 27-35 (In Korean with English abstract). https://koreascience.kr/article/JAKO199720828329094.page
  31. Vail, P. R., and Wornardt, W. Jr., 1991, An integrated approach to exploration and development in the 90s: well log-seismic sequence stratigraphy analysis, Gulf Coast Association of Geological Societies Transactions, 41, 630-650. doi: 10.1306/0C9B2169-1710-11D7-8645000102C1865D
  32. Yang, D. W., and Yang, S. J., 1996, A study on detection of gas reservoirs by AVO and complex analysis, The Korea Society of Mineral and Energy Resources Engineers, 33(5), 340-348 (In Korean with English abstract). https://www.jksmer.or.kr/articles/pdf/MdwX/ksmer-1996-033-05-4.pdf
  33. Yi, S., Yun, H., Park, B., Koo, W. M., Yoo, S., and Kang, S., 2020, Biostratigraphy of the Ulleung Basin, East Sea (Japan Sea), Marine and Petroleum Geology, 122, 104697. https://doi.org/10.1016/j.marpetgeo.2020.104697
  34. Yuan, T., Spence, G. D., Hyndman, R. D., Minshull, T. A., and Singh, S. C., 1999, Seismic velocity studies of a gas hydrate bottom-simulating reflector on the northern Cascadia continental margin: Amplitude modeling and full waveform inversion, Journal of Geophysical Research, 104, 1179-1191. https://doi.org/10.1029/1998JB900020