DOI QR코드

DOI QR Code

아두이노를 활용한 무선 탄성파 자료취득 모듈 구현 실험

Experimental Implementation of a Cableless Seismic Data Acquisition Module Using Arduino

  • 김찬일 (에이에이티) ;
  • 조상인 (인하대학교 에너지자원공학과) ;
  • 편석준 (인하대학교 에너지자원공학과)
  • Chanil Kim (AAT) ;
  • Sangin Cho (Department of Energy Resources Engineering, Inha University) ;
  • Sukjoon Pyun (Department of Energy Resources Engineering, Inha University)
  • 투고 : 2023.06.29
  • 심사 : 2023.07.20
  • 발행 : 2023.08.31

초록

석유가스 탐사 분야에서는 자료 취득 효율성을 개선하기 위한 대안으로 다양한 무선 탄성파 탐사 장비들이 개발되었다. 그러나 현재 상용화된 무선 탄성파 탐사 장비는 높은 가격대를 형성하고 있으므로 작은 규모의 연구용 장비 구축이 어렵다. 이 때 비교적 적은 비용으로 탐사 장비 제작 및 구현이 가능한 오픈소스 하드웨어를 통해 직접 장비를 만들어 실험하는 것이 무선 탄성파 장비의 학술적 활용을 위한 한가지 대안이 될 수 있다. 이 연구에서는 오픈소스 하드웨어 중 아두이노를 이용하여 무선으로 탄성파 자료를 취득하기 위한 모듈을 개발하였다. 무선 탄성파 탐사 장비는 하나의 수신 장비에서 신호 감지, 간단한 전처리, 저장이 모두 이루어져야 한다. 탄성파 신호를 감지하는 센서로는 육상 탄성파 탐사에서 사용되는 지오폰을 활용하였으며, 이를 아두이노 회로와 연결하여 감지된 신호를 처리하고 저장하는 모듈을 구현하였다. 아두이노를 사용하여 구축된 모듈에는 전처리, 아날로그-디지털 변환, 자료저장 등 크게 3가지 기능이 포함된다. 제작한 단일 채널 모듈은 여러 송신원으로부터 취득한 신호를 취합하여 공통 수신점 모음을 구성할 수 있다.

In the oil and gas exploration market, various cableless seismic systems have been developed as an alternative to improve data acquisition efficiency. However, developing such equipment at a small scale for academic research is not available owing to highly priced commercial products. Fortunately, building and experimenting with open-source hardware enable the academic utilization of cableless seismic equipment with relatively low cost. This study aims to develop a cableless seismic acquisition module using Arduino. A cableless seismic system requires the combination of signal sensing, simple pre-processing, and data storage in a single device. A conventional geophone is used as the sensor that detects the seismic wave signal. In addition, it is connected to an Arduino circuit that plays a role in implementing the processing and storing module for the detected signals. Three main functions are implemented in the Arduino module: preprocessing, A/D conversion, and data storage. The developed single-channel module can acquire a common receiver gather from multiple source experiments.

키워드

과제정보

이 논문은 2023년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임(20226A10100030, 고성능 해양 CO2 모니터링 기술개발).

참고문헌

  1. Abrams, M. L., and Elder, A. K., 2013, Dynamic range in a seismic channel, First Break, 31(1), 79-87. doi: 10.3997/1365-2397.31.1.66025
  2. Attia, H., Gaya, S., Alamoudi, A., Alshehri, F. M., Al-Suhaimi, A., Alsulaim, N., Al Naser, A. M., Eddin, M. A. J., Alqahtani, A. M., Rojas, J. P., Ak-Dharrab, S., and Al-Dirini, F., 2020, Wireless geophone sensing system for real-time seismic data acquisition. IEEE Access, 8, 81116-81128. doi: 10.1109/ACCESS.2020.2989280
  3. Crice, D., 2014, A cable-free land seismic system that acquires data in real time. First break, 32(1), 97-100. doi: 10.3997/1365-2397.32.1.72600
  4. Crice, D., Flood, P., and Walthinsen, E., 2015, Cableless seismic systems for near surface geophysics. In Symposium on the Application of Geophysics to Engineering and Environmental Problems 2015 (pp. 465-468). Society of Exploration Geophysicists and Environment and Engineering Geophysical Society. doi: 10.4133/SAGEEP.28-066
  5. Dai, K., Li, X., Lu, C., You, Q., Huang, Z., and Wu, H., 2015, A low-cost energy-efficient cableless geophone unit for passive surface wave surveys, Sensors, 15(10), 24698-24715. doi: 10.3390/s151024698
  6. D'Alessandro, A., Bottari, C., Bucalo, F., Capizzi, P., Cocchi, L., Coltelli, M., Costanza, A., D'Anna, G., D'Anna, R., Fagiolini, A., Fertitta, G., Martorana, R., Passafiume, G., Speciale, S., and Vitale, G., 2016, A Low Cost Customizable Micro-ROV for Environmental Research-Applications, Advances and Challenges. In Near Surface Geoscience 2016-Second Applied Shallow Marine Geophysics Conference (Vol. 2016, No. 1, pp. 1-5). European Association of Geoscientists & Engineers. doi: 10.3997/2214-4609.201602151
  7. Dan, W., Hongtao, W., Guowang, G., and Fei, W., 2021, Research on a high-precision and high-resolution seismic wave signal acquisition system. In Journal of Physics: Conference Series (Vol. 1894, No. 1, p. 012059). IOP Publishing. doi: 10.1088/1742-6596/1894/1/012059
  8. Dean, T., Tulett, J., and Barnwell, R., 2018, Nodal land seismic acquisition: The next generation, First Break, 36(1), 47-52. doi: 10.3997/1365-2397.N0061
  9. Dezord, C., Micolau, G., Abbas, C., Mesgouez, A., and Di Borgo, E. P., 2021, Original experimental bench based on a large loop for environmental measurements at LSBB. In NSG2021 1st Conference on Hydrogeophysics (Vol. 2021, No. 1, pp. 1-5). European Association of Geoscientists & Engineers. doi: 10.3997/2214-4609.202120083
  10. Ellis, R., 2014, Current cabled and cable-free seismic acquisition systems each have their own advantages and disadvantages-is it possible to combine the two?. First Break, 32(1), 91-96. doi: 10.3997/1365-2397.32.1.72599
  11. Gao, S., Xue, B., Li, J., Lin, Z., Chen, Y., and Zhu, X., 2016, High-resolution data acquisition technique in broadband seismic observation systems, Science China Technological Sciences, 59(6), 961-972. doi: 10.1007/s11431-016-6057-7
  12. Geometrics, 2023, https://www.geometrics.com/product/geode-exploration-seismograph/ (June 22, 2023 Accessed).
  13. Geophysical Technology, 2023, https://geophysicaltechnology.com/categories/nru-1c/ (June 22, 2023 Accessed).
  14. Geospace Technology, 2023, https://www.geospace.com/products/land-exploration/gcl/ (June 22, 2023 Accessed).
  15. Gerea, A. G., and Mihai, A. E., 2018, Geophysics Applied in Precision Agriculture-Experimental Resistivity Studies for Plant Root Detection and Analysis. In 24th European Meeting of Environmental and Engineering Geophysics (Vol. 2018, No. 1, pp. 1-5). European Association of Geoscientists & Engineers. doi: 10.3997/2214-4609.201802472
  16. Inova, 2023, https://www.inovageo.com/products/quantum (June 22, 2023 Accessed).
  17. Kang, K., Lee, J. and Hong, J., 2016, Framework for efficient development of embedded software in open source hardware, Smart Media Journal, 5(4), 49-56 (in Korean with English abstract). https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002185607
  18. Kearey, P., Brooks, M., and Hill, I., 2013, An introduction to geophysical exploration, John Wiley & Sons. https://books.google.co.kr/books?id=hcWKltTxdC8C&printsec=frontcover&hl=ko&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
  19. Kim, C., 2019, Development of cableless seismic data acquisition module using Arduino, Master's thesis, Inha University. https://inha.primo.exlibrisgroup.com/permalink/82KST_INH/rooeid/alma991009145846205086
  20. Lee, C., 2013, Digital signal processing, Hanbit Publishing Network. https://books.google.co.kr/books?id=fJvzDwAAQBAJ
  21. Lee, D., Kim, B.-Y., and Jang, S., 2016, Cable-free seismic acquisition system, Geophys. and Geophys. Explor., 19(3), 164-173 (in Korean with English abstract). doi: 10.7582/GGE.2016.19.3.164
  22. Makama, A., Kuladinithi, K., and Timm-Giel, A., 2021, Wireless geophone networks for land seismic data acquisition: A survey, tutorial and performance evaluation, Sensors, 21(15), 5171. doi: 10.3390/s21155171
  23. Open Source Hardware Association, 2023, https://www.oshwa.org/definition/ (June 22, 2023 Accessed).
  24. Proakis, J. G. and Manolakis, D. G., 2007, Digital Signal Processing: Principles Algorithms and Applications 4th ed, Pearson. https://www.academia.edu/28449859/J_G_Proakis_D_G_Manolakis_Digital_signal_processing_Principles_algorithms_and_applications_pdf
  25. Reddy, V. A., Stuber, G. L., and Al-Dharrab, S. I., 2018, Energy efficient network architecture for seismic data acquisition via wireless geophones. In 2018 IEEE international conference on communications (ICC) (pp. 1-5). IEEE. doi: 10.1109/ICC.2018.8422687
  26. RF Wireless World, 2023, http://www.rfwireless-world.com/Terminology/UART-vs-SPI-vs-I2C.html, (June 22, 2023 Accessed).
  27. Ryu, D. and Choi, T., 2016, Development of Open IoT platform based on Open Source Hardware & Cloud Service, Journal of the KIECS, 11(5), 485-490 (in Korean with English abstract). doi: 10.13067/JKIECS.2016.11.5.485
  28. Sercel, 2023, https://www.sercel.com/products/Pages/WiNG.aspx (June 22, 2023 Accessed).
  29. Smartsolo scientific, 2023, https://smartsolo.com/xl-IGU.html (June 22, 2023 Accessed).
  30. Soler-Llorens, J. L., Galiana-Merino, J. J., Giner-Caturla, J., Jauregui-Eslava, P., Rosa-Cintas, S., and Rosa-Herranz, J., 2016, Development and programming of Geophonino: A low cost Arduino-based seismic recorder for vertical geophones. Computers & Geosciences, 94, 1-10. doi: 10.1016/j.cageo.2016.05.014
  31. Trysnyuk, V., Ehorov, V., Trysnyuk, T., Prystupa, V., Nahornyj, Y., and Marushchak, V., 2022, Improvement of The System of Automated Pointing of the Antenna to the Satellite. In 16th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment (Vol. 2022, No. 1, pp. 1-5). European Association of Geoscientists & Engineers. doi: 10.3997/2214-4609.2022580098
  32. Wikipedia, 2023, https://en.wikipedia.org/wiki/Arduino (June 22, 2023 Accessed).
  33. Xie, S., 2016, Practical Filter Design Challenges and Considerations for Precision ADCs, Analog Dialogue, 50(2), 1-5. https://www.analog.com/en/analog-dialogue/articles/practicalfilter-design-precision-adcs.html
  34. Yoo, J., 2013, Open Source Hardware Platform (OPHW) Trends and Forecasts, Internet & Security Focus, 24-50. https://www.kisa.or.kr/20302/form?postSeq=76&page=1#fnPostAttachDownload
  35. Zhang, Z. F., Chen, B. G., and Liu, N., 2015, Application of AdHoc Wi-Fi and 4G communication in wireless seismic data acquisition station. Progress in Geophysics, 30(5), 2337-2341. http://en.dzkx.org/article/doi/10.6038/pg20150547