DOI QR코드

DOI QR Code

Ultimate compressive strength predictions of CFT considering the nonlinear Poisson effect

  • Yu-A Kim (Department of Civil Engineering, Seoul National University of Science and Technology) ;
  • Ju-young Hwang (Department of Civil Engineering, Dong-Eui University) ;
  • Jin-Kook Kim (Department of Civil Engineering, Seoul National University of Science and Technology)
  • 투고 : 2022.11.01
  • 심사 : 2023.08.03
  • 발행 : 2023.08.25

초록

Concrete-filled steel tubes are among the most efficient compressive structural members because the strength of the concrete is enhanced given that the surrounding steel tube confines the concrete laterally and the steel tube is restrained with regard to inward deformation due to the concrete existing inside. Accurate estimations of the ultimate compressive strength of CFT are important for efficient designs of CFT members. In this study, an analytical procedure that directly formulates the interaction between the concrete and steel tube by considering the nonlinear Poisson effect and stress-strain curve of the concrete including the confinement effect is proposed. The failure stress of concrete and von-Mises failure yield criterion of steel were used to consider multi-dimensional stresses. To verify the prediction capabilities of the proposed analytical procedure, 99 circular CFT experimental data instances from other studies were used for a comparison with AISC, Eurocode 4, and other researchers' predictions. From the comparison, it was revealed that the proposed procedure more accurately predicted the ultimate compressive strength of a circular CFT regardless of the range of the design variables, in this case the concrete compressive strength, yield strength of the steel tube and diameter relative to the thickness ratio of the tube.

키워드

과제정보

This work is supported by the Korea Agency for Infrastructure Technology Advancement(KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 21CTAP-C163558-01).

참고문헌

  1. ACI 318 (2019), Building Code Requirements for Strucural Concrete and Commentray, American Concrete Institue, Farmington Hills, MI, USA.
  2. ANSI/AISC 360 (2016), Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, Illinois, USA.
  3. Balmer, G.G. (1949), "Shearing strength of concrete under high triaxial stress - computation of mohr's envelope as a curve", Structural Research Laboratory Report No. SP-23, Office of Chief Engineer, Bureau of Reclamation, United States.
  4. Chakrabarty, J. (2006), Theory of Plasticity, Amsterdam, Netherlands: Elsevier.
  5. Chen, J., Liu, X., Liu, H. and Zeng, L. (2018), "Axial compression behavior of circular recycled concrete-filled steel tubular short columns reinforced by silica fume and steel fiber", J. Steel Compos. Struct., 27(2), 193-200. https://doi.org/10.12989/scs.2018.27.2.193.
  6. Chen, W.F. (1982), Plasticity in Reinforced Concrete, New York, NY: McGraw-Hill Book.
  7. Drucker, D.C. and Prager, W. (1952), "Soil mechanics and plastic analysis on limit design", J. Applied Math., 10(2), 157-165. https://doi.org/10.1090/qam/48291
  8. Eurocode 4 (2004), Design of composite steel and concrete structures, Part 1-1: General rules and rules for buildings, European Committee for Standardization, Brussels, Belgium.
  9. Fan, J., Lyu, F., Ding, F., Bu, D., Wang, S., Tan, Z. and Tan, S. (2021), "Compatibility Optimal Design of Axially Loaded Circular Concrete-Filled Steel Tube Stub Columns", J. Mater., 14(17), 4839. https://doi.org/10.3390/ma14174839.
  10. Farooq, H., Mehmood, H., Malik, M.S. Hanif, A. (2018), Effect of Steel Confinement on Axially Loaded Short Concrete Columns, IOP Conf. Series: Materials Science and Engineering, 012026. https://10.1088/1757-899X/414/1/012026
  11. Furlong, R.W. (1967), "Strength of steel-encased concrete beam columns", J. Struct. Div., 93(5), 113-124. https://doi.org/10.12989/scs.2001.1.4.393.
  12. Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60(7), 1049- 1068. http://hdl.handle.net/10454/5652. 10454/5652
  13. Han, L.H., Zhao, X.L. and Tao, Z. (2001), "Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns", J. Steel Compos. Struct., 1(1), 51-74 https://doi.org/10.12989/scs.2001.1.1.051.
  14. Hasan, H.G., Ekmekyapar, T. and Shehab, B.A. (2019), "Mechanical performances of stiffened and reinforced concrete-filled steel tubes under axial compression", J. Marine Struct., 65.
  15. Hasan, H.G. and Ekmekyapar, T. (2019), "Mechanical performance of stiffened concrete filled double skin steel tubular stub columns under axial compression", J. Civil Eng., 23(5).
  16. He, L., Lin, S. and Jinag, H. (2019), "Confinment effect of concrete-filled steel tube columns with infill concrete of different strength grades", J. Front Matr., 6. https://doi.org/10.3389/fmats.2019.00071.
  17. Huang, C.S., Yeh, Y.K., Liu, G.Y., Hu, H.T., Tsai, K.C., Weng, Y.T., Wang, S.H. and Wu, M.H. (2002), "Axial load behavior of stiffened concrete-filled steel columns", J. Struct. Eng., 128(9), 1222-1230. https://doi.org/10.1061/(ASCE)0733-45(2002)128:9(1222).
  18. Kato, B. (1955), "Compressive strength and deformation capacity of concrete-filled tubular stub columns", J. Struct. Constr. Eng AIJ., 183-191.
  19. Knowles, R.B. and Park, R. (1969), "Strength of concrete filled steel tubular columns", J. Struct. Div., 95, 2565-2587. https://doi.org/10.1061/JSDEAG.0002425
  20. Kupfer, H., Hilsdorf, H.K. and Rusch, H. (1969), "Behavior of concrete under biaxial stresses", J. ACI., 66, 656-666.
  21. Li, B. and Hao, R.X. (2005), "The analysis of concrete filled steel tube column carrying capacity", J. Baotou Univ Iron Steel Technol., 24, 5-8.
  22. Liu, J., Zhou, X. and Gan, D. (2016), "Effect of friction on axially loaded stub circular tubed columns", Adv. Struct. Eng., 19(3), 546-559. https://doi.org/10.1177/1369433216630125.
  23. Luat, N.V., Shin, J., Han, S.W., Nguyen, N.V. and Lee, K. (2021), "Ultimate axial capacity prediction of CCFST columns using hybrid intelligence models - a new approach", J. Steel Compos. Strucut., 40(3), 461-479. https://doi.org/10.12989/scs.2021.40.3.461.
  24. Madas, P. and Elnashai, A.S. (1992), "A new passive confinement model for the analysis of concrete structures subjected to cyclic and transient dynamic loading", J. Earthq. Eng. Struct. Dyn., 21, 409-431. https://doi.org/10.1002/eqe.4290210503.
  25. Mander, J.B., Priestley, M.J.N. and Park, R. (1988a), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  26. Mander, J.B., Priestley, M.J.N. and Park, R. (1988b), "Observed stress-strain behavior of confined concrete", J. Struct. Eng., 114(8), 1827-1849. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1827).
  27. O'Shea, M.D. and Bridge, R.Q. (2000), "Desinge of circular thin-walled concrete filled steel tubes", J. Struct. Eng., 126(11), 1295-1303. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295).
  28. Popovics, S. (1973), "A numerical approach to the complete stress-strain curve of concrete", Cement Concrete Res., 3(5), 583-599. https://doi.org/10.1016/0008-8846(73)90096-3.
  29. Razvi, S. and Saatcioglu, M. (1999), "Confinement model for high-strength concrete", J. Struct. Eng., 125(3), 281-288. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(281).
  30. Richart, F.E., Brandtzaeg, A. and Brown, R.L. (1928), "A study of the failure of concrete under combined compressive stresses", Report No. 12, Engineering Experiment Station, College of Engineering, University of Illinois at Urbana Champaign, Champaign, IL, USA.
  31. Saatcioglu, M. and Razvi, S.R. (1992), "Strength and ductility of confined concrete", J. Struct. Eng., 118(6), 1560-1607. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:6(1590).
  32. Sadd, M.H. (2004), Theory, Applications, and Numerics, Cambridge, Massachusetts: Academic Press.
  33. Saisho, M., Abe, T. and Nakaya, K. (1999), "Ultimate bending strength of high-strength concrete filled steel tube column", J. Struct. Constr. Eng., AIJ. 64(523), 133-140. https://doi.org/10.3130/aijs.64.133_4
  34. Sakino, K. and Hayashi, H. (2004a), Behavior of Concrete Filled Steel Tubular Stub Columns Under Concentric Loading, Proceedings of the Third International Conference on Steel-Concrete Composite Structures, Wakabayashi, Japan, March.
  35. Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004b), "Behavior of Centrally Loaded Concrete-Filled Steel-Tube Short Columns", J. Struct. Eng., 130(2) 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180).
  36. Schneider, S.P. (1998), "Axially loaded concrete-filled steel tubes", J. Struct. Eng., 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125).
  37. Sun, Y. (2008), Proposal and Application of Stress-Strain Model for Concrete Confined by Steel Tubes, the 14th World Conference on Earthquake Engineering, Beijing, China, October.
  38. Tang, J., Hino, S., Kuroda, I. and Ohta, T. (1997), "Analytical Study on Elasto-Plastic Flexural Behavior of Concrete-Filled Circular Steel Tubular Columns", J. Memoirs of the Kyushu University. Faculty of Eng., 57(1), 37-52.
  39. Tomii, M., Yoshimura, K. and Morishita, Y. (1977), Experimental Studies on Concrete Filled Steel Tubular Stub Columns under Concentric Loading, Proceeding of the International Colloquium on Stability of Structures Under Static & Dynamic Loads, New York, USA.
  40. Wang, Q., Shi, Q., Xu, Z. and He, H. (2019), "Axial capacity of reactive powder concrete filled steel tube columns with two load conditions", J. Steel Compos. Struct., 31(1), 13-25. https://doi.org/10.12989/SCS.2019.31.1.013
  41. Wei, J., Luo, X., Lai, Z. and Varma, A.H. (2020), "Experimental behavior and design of high-strength circular concrete-filled steel tube short column", J. Struct. Eng., 146(1). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002474.
  42. Yamamoto, T., Kawaguchi, and J. Morino, S. (2002), "Experimental study of the magnitude effect on the behaviour of concrete filled circular steel tube columns under axial compression", J. Struct. Constr. Eng., 237-244.
  43. Yu, M., Zha, X., Ye, J. and She, C. (2010), "A unified equation for hollow and solid concrete-filled steel tube columns under axial compression", J. Eng. Strucut., 32(4), 1046-1053. https://doi.org/10.1016/j.engstruct.2009.12.031