DOI QR코드

DOI QR Code

Plastic hinge length for coupled and hybrid-coupled shear walls

  • Abouzar Jafari (State Key Laboratory of Disaster Reduction in Civil Engineering, College of Civil Engineering, Tongji University) ;
  • Meysam Beheshti (Department of Civil Engineering, Faculty of Engineering and Technology, University of Mazandaran) ;
  • Amir Ali Shahmansouri (Department of Civil Engineering, Faculty of Engineering and Technology, University of Mazandaran) ;
  • Habib Akbarzadeh Bengar (Department of Civil Engineering, Faculty of Engineering and Technology, University of Mazandaran)
  • 투고 : 2022.12.25
  • 심사 : 2023.08.09
  • 발행 : 2023.08.25

초록

A coupled wall consists of two or more reinforced concrete (RC) shear walls (SWs) connected by RC coupling beams (CBs) or steel CBs (hybrid-coupled walls). To fill the gap in the literature on the plastic hinge length of coupled walls, including coupled and hybrid-coupled shear walls, a parametric study using experimentally validated numerical models was conducted considering the axial stress ratio (ASR) and coupling ratio (CR) as the study variables. A total of sixty numerical models, including both coupled and hybrid-coupled SWs, have been developed by varying the ASR and CR within the ranges of 0.027-0.25 and 0.2-0.5, respectively. A detailed analysis was conducted in order to estimate the ultimate drift, ultimate capacity, curvature profile, yielding height, and plastic hinge length of the models. Compared to hybrid-coupled SWs, coupled SWs possess a relatively higher capacity and curvature. Moreover, increasing the ASR changes the walls' behavior to a column-like member which decreases the walls' ultimate drift, ductility, curvature, and plastic hinge length. Increasing the CR of the coupled SWs increases the walls' capacity and the risk of abrupt shear failure but decreases the walls' ductility, ultimate drift and plastic hinge length. However, CR has a negligible effect on hybrid-coupled walls' ultimate drift and moment, curvature profile, yielding height and plastic hinge length. Lastly, using the obtained results two equations were derived as a function of CR and ASR for calculating the plastic hinge length of coupled and hybrid-coupled SWs.

키워드

참고문헌

  1. AISC (2010), Specification for Structural Steel Buildings (ANSI/AISC 360-10), American Institute of Steel Construction (AISC), Chicago-Illinois, USA.
  2. Akbarzadeh Bengar, H. and Aski, R.M. (2016), "Performance based evaluation of RC coupled shear wall system with steel coupling beam", Steel Compos. Struct., 20(2), 337-355. https://doi.org/10.12989/scs.2016.20.2.337.
  3. Akbarzadeh Bengar, H., Jafari, A. and Beheshti, M. (2019), "A proposed numerical model for nonlinear cyclic analysis of steel and concrete coupling beams in RC coupled shear walls system", Sharif J. Civil Eng., 34.2(4.2), 53-64. https://dx.doi.org/10.24200/j30.2019.1440.
  4. ASCE (2013), Seismic Evaluation and Retrofit of Existing Buildings (ASCE/SEI 41-13), American Society of Civil Engineering, Reston, Virginia, USA.
  5. Beiraghi, H. (2019), "Fragility assessment of shear walls coupled with buckling restrained braces subjected to near-field earthquakes", Steel Compos. Struct., 33(3), 389-402. https://doi.org/10.12989/scs.2019.33.3.389.
  6. Bentz, E.C., Vecchio, F.J. and Collins, M.P. (2006), "Simplified modified compression field theory for calculating shear strength of reinforced concrete elements", ACI Struct. J., 103(4), 614. https://doi.org/10.14359/16438.
  7. Bohl, A.G. and Adebar, P. (2011), "Plastic Hinge Lengths in High-Rise Concrete Shear Walls", ACI Struct. J., 108(2). http://dx.doi.org/10.14359/51664249.
  8. Broujerdian, V. and Mohammadi Dehcheshmeh, E. (2022), "Locating the rocking section in self-centering bi-rocking walls to achieve the best seismic performance", Bull. Earthq. Eng., https://doi.org/10.1007/s10518-022-01325-y.
  9. Cheng, M.-Y., Fikri, R. and Chen, C.-C. (2015), "Experimental study of reinforced concrete and hybrid coupled shear wall systems", Eng Struct. 82 214-225. https://doi.org/10.1016/j.engstruct.2014.10.039
  10. CSI (2018), PERFORM Components and Elements for PERFORM-3D and PERFORMCOLLAPSE, Computers and Structures Inc., Berkeley, California, USA.
  11. El-Tawil, S., Harries, K.A., Fortney, P.J., Shahrooz, B.M. and Kurama, Y. (2010), "Seismic Design of Hybrid Coupled Wall Systems: State of the Art", J Struct Eng. 136(7), 755-769. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000186.
  12. El-Tawil, S. and Kuenzli, C.M. (2002), "Pushover of hybrid coupled walls. II: Analysis and behavior", J. Struct/ Eng., 128(10), 1282-1289. https://doi.org/10.1061/(ASCE)07339445(2002)128:10(1282).
  13. Eljadei, A.A. and Harries, K.A. (2014), "Design of coupled wall structures as evolving structural systems", Eng Struct. 73, 100-113. https://doi.org/10.1016/j.engstruct.2014.05.002.
  14. Frank, J.V. and Michael, P.C. (1986), "The modified compression-field theory for reinforced concrete elements subjected to shear", ACI J. Proceedings. 83(2). https://doi.org/10.14359/10416.
  15. Gong, B. and Shahrooz, B.M. (2001), "Concrete-steel composite coupling beams. II: Subassembly testing and design verification", J. Struct Eng. 127(6), 632-638. https://doi.org/10.1061/(ASCE)07339445(2001)127:6(632).
  16. Harries, K.A., Gong, B. and Shahrooz, B.M. (2000), "Behavior and design of reinforced concrete, steel, and steel-concrete coupling beams", Earthq. Spectra. 16(4), 775-799. https://doi.org/10.1193/1.1586139.
  17. Harries, K.A., Mitchell, D., Cook, W.D. and Redwood, R.G. (1993), "Seismic response of steel beams coupling concrete walls", J. Struct Eng., 119(12), 3611-3629. https://doi.org/10.1061/(ASCE)07339445(1993)119:12(3611).
  18. Hassani, B. and Jafari, A. (2012), "An Investigation on the seismic performance of reinforced concrete panel structures", Asian J. Civil Eng. (Build. Housing). 13(2), 181-193.
  19. Hassanli, R., ElGawady, M.A. and Mills, J.E. (2017), "In-plane flexural strength of unbonded post-tensioned concrete masonry walls", Eng Struct., 136, 245-260. https://doi.org/10.1016/j.engstruct.2017.01.016.
  20. Hoult, R.D., Goldsworthy, H.M. and Lumantarna, E. (2018), "Plastic hinge analysis for lightly reinforced and unconfined concrete structural walls", Bull. Earthq. Eng., 16(10), 4825-4860. https://doi.org/10.1007/s10518-018-0369-x.
  21. Jafari, A., Akbarzadeh Bengar, H., Hassanli, R., Nazari, M. and Dugnani, R. (2021a), "The response of self-centering concrete walls under quasi-static loading", Bull. Earthq. Eng., 19(7), 2893-2917. https://doi.org/10.1007/s10518-021-01100-5.
  22. Jafari, A., Ghasemi, M.R., Akbarzadeh Bengar, H. and Hassani, B. (2018a), "Seismic performance and damage incurred by monolithic concrete self-centering rocking walls under the effect of axial stress ratio", Bull. Earthq. Eng., 16(2), 831-858. https://doi.org/10.1007/s10518-017-0227-2.
  23. Jafari, A., Ghasemi, M.R., Bengar, H.A. and Hassani, B. (2018b), "A novel method for quantifying damage to cast-in-place self-centering concrete stepping walls", Struct. Concrete. 19(6), 1713-1726. https://doi.org/10.1002/suco.201700247.
  24. Jafari, A., Preti, M., Beheshti, M. and Dugnani, R. (2021b), "Self-centering walls strengthening by high-performance concrete: a feasibility study", Mater. Struct., 54(3), 117. https://doi.org/10.1617/s11527-021-01710-0.
  25. Kazaz, I. (2013), "Analytical Study on Plastic Hinge Length of Structural Walls", J. Struct. Eng., 139(11), 1938-1950. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000770.
  26. Kim, T.H., Lee, K.M., Chung, Y.S. and Shin, H.M. (2005), "Seismic damage assessment of reinforced concrete bridge columns", Eng Struct. 27(4), 576-592. https://doi.org/10.1016/j.engstruct.2004.11.016.
  27. Lequesne, R.D. (2011), Behavior and Design of High-Performance Fiber-Reinforced Concrete Coupling Beams and Coupled-Wall Systems, University of Michigan, MI, USA.
  28. Li, Y., Yu, H., Liang, X., Yu, J., Li, P., Wang, W. and Wang, Q. (2022), "Seismic behavior of coupled wall structure with innovative quickly replaceable coupling beams", Steel Compos. Struct., 45(2), 293-303. https://doi.org/10.12989/scs.2022.45.2.293.
  29. Liping Xie, E.C.B. and Michael, P.C. (2011), "Influence of Axial Stress on Shear Response of Reinforced Concrete Elements", ACI Struct. J., 108(6). https://doi.org/10.14359/51683373.
  30. Lopez-Lopez, A., Tomas, A. and Sanchez-Olivares, G. (2016), "Influence of adjusted models of plastic hinges in nonlinear behaviour of reinforced concrete buildings", Eng. Struct., 124, 245-257. https://doi.org/10.1016/j.engstruct.2016.06.021.
  31. Ma, H., Wang, J., Lui, E.M., Wan, Z. and Wang, K. (2019), "Experimental study of the behavior of beam-column connections with expanded beam flanges", Steel Compos. Struct., 31(3), 319. https://doi.org/10.12989/scs.2019.31.3.319.
  32. Mander, J.B., Priestley, M.J. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)07339445(1988)114:8(1804)
  33. Memarzadeh, A., Shahmansouri, A.A. and Poologanathan, K. (2022), "A novel prediction model for post-fire elastic modulus of circular recycled aggregate concrete-filled steel tubular stub columns", Steel Compos. Struct., 44(3), 309-324. https://doi.org/10.12989/scs.2022.44.3.309.
  34. Mohammadi Dehcheshmeh, E. and Broujerdian, V. (2022a), "Determination of optimal behavior of self-centering multiple-rocking walls subjected to far-field and near-field ground motions", J. Build. Eng., 45, 103509. https://doi.org/10.1016/j.jobe.2021.103509.
  35. Mohammadi Dehcheshmeh, E. and Broujerdian, V. (2022b), "Probabilistic evaluation of self-centering birocking walls subjected to far-field and near-field ground Motions", J. Struct. Eng., 148(9), 04022134. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003435.
  36. Motter, C.J. (2014), Large-Scale Testing of Steel-Reinforced Concrete (SRC) Coupling Beams Embedded into Reinforced Concrete Structural Walls, University of California, Los Angeles, US.
  37. Mun, J.-H. and Yang, K.-H. (2015), "Plastic hinge length of reinforced concrete slender shear walls", Magaz. Concrete Research. 67(8), 414-429. 10.1680/macr.14.00298.
  38. Naeim, F. (2001), "Dynamics of Structures, Theory and Applications in Earthquake Engineering, Earthq. Spectra. 17(3), 549-550. 10.1193/1.1586188
  39. Naish, D.A.B. (2010), Testing and Modeling of Reinforced Concrete Coupling Beams, University of California, Los Angeles, Los Angeles, USA.
  40. Park, R. and Paulay, T. (1975), Reinforced Concrete Structures, John Wiley & Sons, New York, US.
  41. Park, Y.J., Ang, A.H.-S. and Wen, Y.K. (1987), "Damage-limiting aseismic design of buildings", Earthq. Spectra. 3(1), 1-26. https://doi.org/10.1193/1.1585416.
  42. Paulay, T. (1986), "The design of ductile reinforced concrete structural walls for earthquake resistance", Earthq. Spectra. 2(4), 783-823. https://doi.org/10.1193/1.1585411.
  43. Paulay, T. and Binney, J.R. (1974), "Diagonally reinforced coupling beams of shear walls", ACI Symposium Publication. 42. 10.14359/17302
  44. Paulay, T. and Priestley, M.J.N. (1992), Seismic Design of Reinforced Concrete and Masonry Buildings, Wiley, USA.
  45. Paulay, T. and Priestley, M.J.N. (1993), "Stability of ductile structural walls", ACI Struct. J., 90(4). http://dx.doi.org/10.14359/3958.
  46. Paulay, T. and Uzumeri, S.M. (1975), "A critical review of the seismic design provisions for ductile shear walls of the Canadian code and commentary", Can J Civ Eng. 2(4), 592-601. https://doi.org/10.1139/l75-054.
  47. Petry, S. and Beyer, K. (2014), "Influence of boundary conditions and size effect on the drift capacity of URM walls", Eng Struct. 65 76-88. https://doi.org/10.1016/j.engstruct.2014.01.048.
  48. Priestley, M., Calvi, G. and Kowalsky, M. (2007), Displacement-Based Seismic Design of Structures, IUSS, Pavia, Italy.
  49. R.G. Oesterle, Aristizabal-Ochoa, J.D., Shiu, K.N. and Corley, W.G. (1984), "Web crushing of reinforced concrete structural walls", ACI J. Proceedings. 81(3). https://doi.org/10.14359/10679
  50. Ramberg, W. and Osgood, W.R. (1943), Description of Stress-Strain Curves by Three Parameters.
  51. Ren, L., Fang, B., Wang, K. and Yuan, F. (2022), "Numerical investigation on plastic hinge length of ultra-high performance concrete column under cyclic load", J. Earthq. Eng., 26(3), 1281-1299. https://doi.org/10.1080/13632469.2020.1713929.
  52. Sadeghi, M., Jandaghi Alaee, F., Akbarzadeh Bengar, H. and Jafari, A. (2022), "Evaluating the efficiency of supplementary rebar system in improving hysteretic damping of self-centering rocking walls", Bull. Earthq. Eng., 20(11), 6075-6107. 10.1007/s10518-022-01421-z.
  53. Sadeghi, M., Jandaghi Alaee, F., Bengar Habib, A. and Jafari, A. (2023), "Hysteresis behavior of hybrid rocking walls: An analytical method", Practice Periodic. Struct. Des. Construct., 28(1), 04022064. https://doi.org/10.1061/PPSCFX.SCENG-1238.
  54. Sasani, M. and Kiureghian, A.D. (2001), "Seismic fragility of RC structural walls: Displacement approach", J. Struct. Eng., 127(2), 219-228. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:2(219).
  55. Shahrooz, B.M., Gong, B., Tunc, G. and Deason, J.T. (2001), "An overview of reinforced concrete core wall-steel frame hybrid structures", Progress Struct. Eng. Mater., 3(2), 149-158. https://doi.org/10.1002/pse.67.
  56. Shahrooz, B.M., Remmetter, M.E. and Qin, F. (1993), "Seismic Design and Performance of Composite Coupled Walls", J. Struct. Eng., 119(11), 3291-3309. https://doi.org/10.1061/(ASCE)07339445(1993)119:11(3291).
  57. Shiu, K.N., Takayanagi, T. and Corley, W.G. (1984), "Seismic behavior of coupled wall systems", J. Struct. Eng., 110(5), 1051-1066. https://doi.org/10.1061/(ASCE)07339445(1984)110:5(1051).
  58. Sritharan, S., Beyer, K., Henry, R.S., Chai, Y., Kowalsky, M. and Bull, D. (2014), "Understanding poor seismic performance of concrete walls and design implications", Earthq. Spectra. 30(1), 307-334. https://doi.org/10.1193/021713EQS036M.
  59. Tazarv, M. and Saiidi, M.S. (2016), "Seismic design of bridge columns incorporating mechanical bar splices in plastic hinge regions", Eng. Struct., 124, 507-520. https://doi.org/10.1016/j.engstruct.2016.06.041.
  60. Thomsen, J.H. and Wallace, J.W. (2004), "Displacement-based design of slender reinforced concrete structural walls-experimental verification", J. Struct. Eng., 130(4), 618-630. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(618).
  61. Tuna, Z. (2012), Seismic Performance, Modeling, and Failure Assessment of Reinforced Concrete Shear Wall Buildings,
  62. Vatansever, C. and Kutsal, K. (2018), "Effect of bolted splice within the plastic hinge zone on beam-to-column connection behavior", Steel Compos. Struct., 28(6), 767. https://doi.org/10.12989/scs.2018.28.6.767.
  63. Wallace, J.W. and Moehle, J.P. (1992), "Ductility and Detailing Requirements of Bearing Wall Buildings", J Struct Eng. 118(6), 1625-1644. https://doi.org/10.1061/(ASCE)07339445(1992)118:6(1625)
  64. Zhu, L., Zhang, C., Guan, X., Uy, B., Sun, L. and Wang, B. (2018), "The multi-axial strength performance of composite structural BCW members subjected to shear forces", Steel Compos. Struct., 27(1), 75. https://doi.org/10.12989/scs.2018.27.1.027.