DOI QR코드

DOI QR Code

EXTENSIONS OF ORDERED FIXED POINT THEOREMS

  • Sehie Park (The National Academy of Sciences, Department of Mathematical Sciences, Seoul National University)
  • Received : 2022.12.30
  • Accepted : 2023.06.25
  • Published : 2023.09.15

Abstract

Our long-standing Metatheorem in Ordered Fixed Point Theory is applied to some well-known order theoretic fixed point theorems. In the first half of this article, we introduce extended versions of the Zermelo fixed point theorem, Zorn's lemma, and the Caristi fixed point theorem based on the Brøndsted-Jachymski principle and our 2023 Metatheorem. We show some of their applications to other fixed point theorems or theorems on the existence of maximal elements in partially ordered sets. In the second half, we collect and improve order theoretic fixed point theorems in the collection of Howard-Rubin in 1991 and others. In fact, we improve or extend several ordering principles or fixed point theorems due to Brézis-Browder, Brøndsted, Knaster-Tarski, Tarski-Kantorovitch, Turinici, Granas-Horvath, Jachymski, and others.

Keywords

References

  1. A. Abian, A fixed point theorem equivalent to the axiom of choice, Arch. Math. Logik, 25 (1985), 173-174. https://doi.org/10.1007/BF02007565
  2. S. Abian and A.B. Brown, A theorem on partially ordered sets, with applications to fixed point theorems, Canad. J. Math., 13 (1961), 78-82. https://doi.org/10.4153/CJM-1961-007-5
  3. N. Bourbaki, Sur Ie theoreme de Zorn, Arch. Math., 2 (1949-50), 434-437. https://doi.org/10.1007/BF02036949
  4. A. Brondsted, Fixed point and partial orders, Shorter Notes, Proc. Amer. Math. Soc., 60 (1976), 365-366. https://doi.org/10.2307/2041175
  5. H. Brezis and F.E. Browder, A general principle on ordered sets in nonlinear functional analysis, Adv. Math., 21 (1976), 355-364. https://doi.org/10.1016/S0001-8708(76)80004-7
  6. N. Brunner, Topologische Maximalprinzippen, Zeitschr. f. math. Logik und Grundlagen d. Math., 33 (1987), 135-139. https://doi.org/10.1002/malq.19870330208
  7. J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215 (1976), 241-251. https://doi.org/10.1090/S0002-9947-1976-0394329-4
  8. Y. Chen, Y.J. Cho, and L. Yang, Note on the results with lower semicontinuity. Bull. Korean Math. Soc., 39 (2002), 535-541. https://doi.org/10.4134/BKMS.2002.39.4.535
  9. S. Cobza,s, Fixed points and completeness in metric and in generalized metric spaces, arXiv:1508.05173v4 (2016) 71pp. J. Math. Sciences, 250(3) (2020), 475-535. https://doi.org/10.1007/s10958-020-05027-1
  10. H. Covitz and S.B. Nadler, Jr., Multi-valued contraction mappings in generalized metric spaces, Israel J. Math., 8 (1970), 5-11. https://doi.org/10.1007/BF02771543
  11. S. Dancs, M. Hegedus, and P. Medvegyev, A general ordering and fixed-point principle in complete metric space, Acta Sci. Math., (Szeged), 46 (1983), 381-388.
  12. J. Dugundji and A. Granas, Fixed Point Theory I. Polish Scientific Publishers, Warszawa, 1982.
  13. N. Dunford and J. Schwartz, Linear Operators I: General Theory, Wiley Interscience, New York, 1957.
  14. M. Edelstein, An extension of Banach's contraction principle, Proc. Amer. Math. Soc., 12 (1961), 7-10. https://doi.org/10.1090/S0002-9939-1961-0120625-6
  15. M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74-79. https://doi.org/10.1112/jlms/s1-37.1.74
  16. I. Ekeland, Sur les probl'emes variationnels, C.R. Acad. Sci. Paris, 275 (1972), 1057-1059; 276 (1973), 1347-1348.
  17. I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353. https://doi.org/10.1016/0022-247X(74)90025-0
  18. A. Granas and J. Dugundji, Fixed Point Theory, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003. xvi+690pp.
  19. A. Granas and C.D. Horvath, On the order-theoretic Cantor theorem, Taiwan. J. Math., 4(2) (2000), 203-213. https://doi.org/10.11650/twjm/1500407228
  20. H. Hoft and P. Howard, Well ordered subsets of linearly ordered sets, Notre Dame J. Formal Logic, 35 (1994), 413-425.
  21. P. Howard and J.E. Rubin, Consequences of the Axiom of Choice, Amer. Math. Soc., 1998.
  22. J.R. Jachymski, Caristi's fixed point theorem and selections of set-valued contractions, J. Math. Anal. Appl., 227 (1998), 55-67. https://doi.org/10.1006/jmaa.1998.6074
  23. J.R. Jachymski, Some consequences of the Tarski-Kantorovitch ordering theorem in metric fixed point theory, Quaestiones Mathematicae, 21(1-2) (1998), 89-99. https://doi.org/10.1080/16073606.1998.9632028
  24. J. Jachymski, Fixed point theorems in metric and uniform spaces via the Knaster-Tarski Principle, Nonlinear Anal., 32 (1998), 225-233. https://doi.org/10.1016/S0362-546X(97)00474-4
  25. J. Jachymski, L. Gajek, and P. Pokarowski, The Tarski-Kantorovitch principle and the theory of iterated function systems, Bull. Aust. Math. Soc., 61 (2000), 247-261. https://doi.org/10.1017/S0004972700022243
  26. J. Jachymski, Order-theoretic aspects of metric fixed point theory, Chapter 18 in: Handbook of Metric Fixed Point Theory (W.A. Kirk and B. Sims, eds.), Kluwer Academic Publ., (2001), 613-641.
  27. J. Jachymski, Converses to fixed point theorems of Zermelo and Caristi, Nonlinear Anal., 52 (2003), 1455-1463. https://doi.org/10.1016/S0362-546X(02)00177-3
  28. J. Jachymski, A stationary point theorem charaterizing metric completeness, Appl. Math. Lett., 24 (2011), 169-171. https://doi.org/10.1016/j.aml.2010.08.039
  29. S. Kasahara, On fixed points in partially ordered sets and Kirk-Caristi theorem, Math. Seminar Notes, 3 (1975), 229-232.
  30. W.A. Kirk, Contraction mappings and extensions, Chapter 1 in: Handbook of Metric Fixed Point Theory (W.A. Kirk and B. Sims, ed.), Kluwer Academic Publ., (2001), 1-34.
  31. B. Knaster, Un theoreme sur les fonctions d'ensembles, Ann. Soc. Polon. Math., 6 (1928), 133-134.
  32. H. Kneser, Eine direkte Ableitung des Zornschen lemmas aus dem Auswahlaxiom, Math. Z., 53 (1950), 110-113. https://doi.org/10.1007/BF01162404
  33. J. Li, Inductive properties of fixed point sets of mappings on posets and on partially ordered topological spaces, Fixed Point Theory Appl., (2015) 2015:211. DOI10.1186/s13663-015-0461-8.
  34. R. Manka, Some form of the axiom of choice, Jahrbuch der Kurt-Godel-Geselschaft, (1988), 24-34.
  35. S.B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475-488. https://doi.org/10.2140/pjm.1969.30.475
  36. V.V. Nemytskii, The fixed point method in analysis, Usp. Mat. Nauk., 1 (1936), 141-174.
  37. M. Pacurar and I.A. Rus, Some remarks on the notations and terminology in the ordered set theory, Creat. Math. Inform., 20(2) (2011), ISSN 1843 - 441X
  38. S. Park, Some applications of Ekeland's variational principle to fixed point theory, in Approximation Theory and Applications (S.P. Singh, ed.), Pitman Res. Notes Math., 133 (1985), 159-172.
  39. S. Park, Equivalent formulations of Ekeland's variational principle for approximate solutions of minimization problems and their applications, Operator Equations and Fixed Point Theorems (S.P. Singh et al., eds.), MSRI-Korea Publ., 1 (1986), 55-68.
  40. S. Park, Equivalents of various maximum principles, Results in Nonlinear Anal., 5(2) (2022), 169-174.  https://doi.org/10.53006/rna.1107320
  41. S. Park, Applications of various maximum principles, J. Fixed Point Theory, (2022) 2022:3, 1-23. ISSN:2052-5338.
  42. S. Park, Equivalents of maximum principles for several spaces, Top. Algebra Appl., 10 (2022), 68-76, 10.1515/taa-2022-0113.
  43. S. Park, Equivalents of generalized Brondsted principle, J. Informatics Math. Sci., to appear.
  44. S. Park, Equivalents of ordered fixed point theorems of Kirk, Caristi, Nadler, Banach, and others, Adv. Th. Nonlinear Anal. Appl., 6(4) (2022), 420-432. https://doi.org/10.31197/atnaa.1127248
  45. S. Park, Variants of the new Caristi theorem, Adv. Th. Nonlinear Anal. Appl., 7(2) (2023), 347-358. ISSN: 2567-2648.
  46. S. Park, Foundations of ordered fixed point theory, J. Nat. Acad. Sci., ROK, Nat. Sci. Ser., 61(2) (2022), 247-287.
  47. S. Park, Applications of several minimum principles, Adv. Th. Nonlinear Anal. Appl. 7(1) (2023), 52-60, DOI:10.13140/RG.2.2.25495.65442.
  48. M. Taskovic, Characterizations of inductive posets with applications, Proc. Amer. Math. Soc., 104 (1988), 650-660. https://doi.org/10.1090/S0002-9939-1988-0962843-X
  49. M. Taskovic, The axiom of choice, fixed point theorems and inductive ordered sets, Proc. Amer. Math. Soc., 116 (1992), 897-904. https://doi.org/10.1090/S0002-9939-1992-1111224-8
  50. M. Toyoda, Caristi fixed point theorem and Bourbaki-Kneser fixed point theorem, RIMS Kokyuroku, Kyoto Univ., 2194 (2020), 97-107; II, 2214 (2021), 7pp.
  51. M. Turinici, Maximal elements in a class of order complete metric spaces, Math. Japonica, 25(5) (1980), 511-517.
  52. M. Turinici, Functional versions of the Caristi-Kirk theorem, Revista Union Math. Argentina, 50(1) (2009), 87-97.
  53. E. Zermelo, Neuer Beweis fur die Moglichkeit einer Wohlordnung, Math. Ann., 65 (1908), 107-128.  https://doi.org/10.1007/BF01450054