DOI QR코드

DOI QR Code

FIXED POINTS OF MULTI-VALUED OSILIKE-BERINDE NONEXPANSIVE MAPPINGS IN HYPERBOLIC SPACES

  • Kiran Dewangan (Department of Mathematics, Government Dudhadhari Bajrang Girls Postgraduate Autonomous College) ;
  • Niyati Gurudwan (Department of Mathematics, Government J. Yoganandam Chattisgarh College) ;
  • Laxmi Rathour (Department of Mathematics, National Institute of Technology)
  • Received : 2022.11.10
  • Accepted : 2023.05.22
  • Published : 2023.09.15

Abstract

This paper is concerned with fixed point results of a finite family of multi-valued Osilike-Berinde nonexpansive type mappings in hyperbolic spaces along with some numerical examples. Also strong convergence and ∆-convergence of a sequence generated by Alagoz iteration scheme are investigated.

Keywords

References

  1. F. Akutsah and O.K. Narain, On generalized (α, β)-nonexpansive Mappings in Banach Spaces with Applications, Nonlinear Funct. Anal. Appl., 26(4) (2021), 663-684. 
  2. O. Alagoz, B. Gunduz and S. Akbulut, Convergence theorems for a family of multi-valued nonexpansive mappings in hyperbolic spaces, Open Mathematics, 14 (2016), 1065-1073.  https://doi.org/10.1515/math-2016-0095
  3. E.O. Austine, I. Hseyin, and A. Junaid, A new iterative approximation scheme for ReichSuzuki-type nonexpansive operators with an application, J. Inequa. Appl., 2022(28) (2022), 1-26, https://doi.org/10.1186/s13660-022-02762-8. 
  4. S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations intgrales, Fund. Math., 3 (1922), 133-181.  https://doi.org/10.4064/fm-3-1-133-181
  5. H.H. Bauschke and P.L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, Ser. CMS Books in Mathematics, Berlin, Springer, 2011. 
  6. A.U. Bello, C.C. Okeke and C. Izuchukw, Approximating common fixed point for family of multi-valued mean nonexpansive mappings in hyperbolic spaces, Adv. Fixed Point Theory, 7(4) (2017), 524-543. 
  7. V. Berinde, On the approximation of fixed points of weak contractive mappings, Carpath. J. Math., 19 (2003), 7-22. 
  8. S.S. Chang, G.E. Kim, L. Wang and Y.K. Tang, ∆- convergence theorems for multi-valued nonexpansive mappings in hyperbolic spaces, Appl. Math. Comput., 249 (2014), 535-540. 
  9. N. Hussain, K. Ullah and M. Arshad, Fixed point approximation of Suzuki generalized non-expansive mappings via new faster iteration process, J. Nonlinear Convex Anal., 19 (2018), 1383-1393. 
  10. S. Ishikawa, Fixed points by new iteration method, Proc. Amer. Math. Soc., 149 (1974), 147-150.  https://doi.org/10.1090/S0002-9939-1974-0336469-5
  11. A. Junaid, K. Ullah and M. Arshad, Convergence, weak w2 stability, and data dependence results for the F iterative scheme in hyperbolic spaces, Numerical Algorithms, 91 (2022), 1755-1778, http://dx.doi.org/10.1007/s11075-022-01321-y. 
  12. A. Junaid, K. Ullah and M. Arshad, Approximation of fixed points for a class of mappings satisfying property (CSC) in Banach spaces, Mathematical Sciences, 15 (2021), 207-213, https://doi.org/10.1007/s40096-021-00407-3. 
  13. A. Junaid, K. Ullah and M. de la Sen, On generalized nonexpansive maps in Banach spaces, Computation, 8(61) (2020), 1-13.  https://doi.org/10.3390/computation8030061
  14. A. Junaid, K. Ullah, M. Arshad, M. de la Sen and M. Zhenhua, Convergence results on Picard-Krasnoselskii hybrid iterative process in CAT(0) spaces, Open Math., 19 (2021), 1713-1720, https://doi.org/10.1515/math-2021-0130. 
  15. A. Junaid, K. Ullah and M.K. Fida, Numerical reckoning fixed points via new faster iteration process, Appl. Gen. Topol., 23(1) (2022), 213-223.  https://doi.org/10.4995/agt.2022.11902
  16. A. Junaid, K. Ullah, H.A. Hammad and R. George, On fixed point approximations for a class of nonlinear mappings based on the JK iterative scheme with application, AIMS Mathematics, 8(6) (2023), 13663-13679. https://doi.org/10.3934/math.2023694. 
  17. A. Junaid, K. Ullah, H.A. Hammad and R. George, A solution of a fractional differential equation via novel fixed point approaches in Banach spaces, AIMS Mathematics, 8(6) (2023), 12657-12670, https://doi.org/10.3934/math.2023636. 
  18. A. Junaid, K. Ullah, A. Imtiaz, M. Arshad, N. Jarasthitikulchai and W. Sudsutad, Some iterative approximation results of F iteration process in Banach spaces, Axioms, 11(4) (2022), 1-10, https://doi.org/10.3390/axioms11040153. 
  19. S. Kar and P. Veeramani, Fixed point theorems for generalized nonexpansive mappings, Numer. Funct. Anal. Optim., 40(8) (2019), 888-901.  https://doi.org/10.1080/01630563.2018.1564327
  20. A.R. Khan, H. Fukhar-Ud-din and M.A.A. Khan, An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces, Fixed Point Theory Appl., 2012(1) (2012), 1-12, https://doi.org/10.1186/1687-1812-2012-54. 
  21. J.K. Kim, S. Dashputre and W.H. Lim, Approximation of fixed points for multi-valued nonexpansive mappings in Banach space, Global J. Pure Appl. Math., 12(6) (2016), 4901-4912. 
  22. D. Kuna, K.S. Kalla and Sumati K. Panda, Utilizing fixed point methods in mathematical modelling, Nonlinear Funct. Anal. Appl., 28(2) (2023), 473-495. 
  23. L. Leustean, Nonexpansive iteration in uniformly convex W- hyperbolic spaces, Nonlinear Anal. Optim., 513 (2010), 193-210, http://dx.doi.org/10.1090/conm/513/10084. 
  24. W.R. Mann, Mean value methods in iterations, Proc. Amer. Math. Soc., 4 (1953), 506-510.  https://doi.org/10.1090/S0002-9939-1953-0054846-3
  25. J.T. Markin, Continuous dependence of fixed point sets, Proc. Amer. Math. Soc., 38 (1973), 545-547.  https://doi.org/10.1090/S0002-9939-1973-0313897-4
  26. S.B. Nadler, Multi-valued contraction mappings, Pac. J. Math., 30 (1969), 475-488.  https://doi.org/10.2140/pjm.1969.30.475
  27. H. Nawab, K. Ullah and M. Arshad, Fixed point approximation of Suzuki generalized nonexpansive mappings via new faster iteration process, J. Nonlinear Convex Anal., 19(8) (2018), 1383-1393, https://doi.org/10.48550/arXiv.1802.09888. 
  28. M.A. Noor, New approximation schemes for general variation inequality, J. Math. Anal. Appl., 251 (2000), 221-229.  https://doi.org/10.1006/jmaa.2000.7042
  29. G.A. Okeke, D. Francis and J.K. Kim, New proofs of some fixed point theorems for mappings satisfying Reich type contractions in modular metric spaces, Nonlinear Funct. Anal. Appl., 28(1) (2023), 1-9. 
  30. M.O. Osilike, Stability results for fixed point iteration procedures, J. Nigerian Math. Soc., 14/15 (1995/96), 17-29. 
  31. V.K. Pathak, L.N. Mishra and V.N. Mishra, On the solvability of a class of nonlinear functional integral equations involving ErdlyiKober fractional operator, Math. Meth. Appl. Sci., (2023), https://doi.org/10.3390/fractalfract6120744. 
  32. A.Z. Rezazgui, W. Shatanawi and A. Tallafha, Common fixed point theorems in the setting of extended quasi b-metric spaces under extended A-contraction mappings, Nonlinear Funct. Anal. Appl., 28(1) (2023), 251-263. 
  33. A.G. Sanatee, L. Rathour, V.N. Mishra and V. Dewangan, Some fixed point theorems in regular modular metric spaces and application to Caratheodory's type anti-periodic boundary value problem, The J. Anal., 31 (2022), 619-632.  https://doi.org/10.1007/s41478-022-00469-z
  34. K.P.R. Sastry and G.V.R. Babu, Convergence of Ishikawa iterates for a multi-valued mapping with a fixed point, Czechoslovak Math. J., 55 (2005), 817-826.  https://doi.org/10.1007/s10587-005-0068-z
  35. C. Suanoom and C. Klin-eam, Remark on fundamentally nonexpansive mappings in hyperbolic spaces, J. Nonlinear Sci. Appl., 9 (2016), 1952-1956.  https://doi.org/10.22436/jnsa.009.05.01
  36. D. Thakur, B.S. Thakur and M. Postolache, New iteration scheme for numerical reckoning fixed points of nonexpansive mappings, J. Inequal. Appl., 2014(1) (2014), 1-15.  https://doi.org/10.1186/1029-242X-2014-1
  37. N.D. Truong, J.K. Kim and T.H.H. Anh, Hybrid inertial contraction projection methods extended to variational inequality problems, Nonlinear Funct. Anal. Appl., 27(1) (2022), 203-221. 
  38. K. Ullah and M. Arshad, New three-step iteration process and fixed point approximation in Banach spaces, J. Linear Topol. Algebra, 7(2) (2018), 87-100. 
  39. F. Vetro, Fixed point results for nonexpansive mappings on metric spaces, Filomat, 29(9) (2015), 2011-2020. https://doi.org/10.2298/FIL1509011V