References
- F. Akutsah and O.K. Narain, On generalized (α, β)-nonexpansive Mappings in Banach Spaces with Applications, Nonlinear Funct. Anal. Appl., 26(4) (2021), 663-684.
- O. Alagoz, B. Gunduz and S. Akbulut, Convergence theorems for a family of multi-valued nonexpansive mappings in hyperbolic spaces, Open Mathematics, 14 (2016), 1065-1073. https://doi.org/10.1515/math-2016-0095
- E.O. Austine, I. Hseyin, and A. Junaid, A new iterative approximation scheme for ReichSuzuki-type nonexpansive operators with an application, J. Inequa. Appl., 2022(28) (2022), 1-26, https://doi.org/10.1186/s13660-022-02762-8.
- S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations intgrales, Fund. Math., 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
- H.H. Bauschke and P.L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, Ser. CMS Books in Mathematics, Berlin, Springer, 2011.
- A.U. Bello, C.C. Okeke and C. Izuchukw, Approximating common fixed point for family of multi-valued mean nonexpansive mappings in hyperbolic spaces, Adv. Fixed Point Theory, 7(4) (2017), 524-543.
- V. Berinde, On the approximation of fixed points of weak contractive mappings, Carpath. J. Math., 19 (2003), 7-22.
- S.S. Chang, G.E. Kim, L. Wang and Y.K. Tang, ∆- convergence theorems for multi-valued nonexpansive mappings in hyperbolic spaces, Appl. Math. Comput., 249 (2014), 535-540.
- N. Hussain, K. Ullah and M. Arshad, Fixed point approximation of Suzuki generalized non-expansive mappings via new faster iteration process, J. Nonlinear Convex Anal., 19 (2018), 1383-1393.
- S. Ishikawa, Fixed points by new iteration method, Proc. Amer. Math. Soc., 149 (1974), 147-150. https://doi.org/10.1090/S0002-9939-1974-0336469-5
- A. Junaid, K. Ullah and M. Arshad, Convergence, weak w2 stability, and data dependence results for the F iterative scheme in hyperbolic spaces, Numerical Algorithms, 91 (2022), 1755-1778, http://dx.doi.org/10.1007/s11075-022-01321-y.
- A. Junaid, K. Ullah and M. Arshad, Approximation of fixed points for a class of mappings satisfying property (CSC) in Banach spaces, Mathematical Sciences, 15 (2021), 207-213, https://doi.org/10.1007/s40096-021-00407-3.
- A. Junaid, K. Ullah and M. de la Sen, On generalized nonexpansive maps in Banach spaces, Computation, 8(61) (2020), 1-13. https://doi.org/10.3390/computation8030061
- A. Junaid, K. Ullah, M. Arshad, M. de la Sen and M. Zhenhua, Convergence results on Picard-Krasnoselskii hybrid iterative process in CAT(0) spaces, Open Math., 19 (2021), 1713-1720, https://doi.org/10.1515/math-2021-0130.
- A. Junaid, K. Ullah and M.K. Fida, Numerical reckoning fixed points via new faster iteration process, Appl. Gen. Topol., 23(1) (2022), 213-223. https://doi.org/10.4995/agt.2022.11902
- A. Junaid, K. Ullah, H.A. Hammad and R. George, On fixed point approximations for a class of nonlinear mappings based on the JK iterative scheme with application, AIMS Mathematics, 8(6) (2023), 13663-13679. https://doi.org/10.3934/math.2023694.
- A. Junaid, K. Ullah, H.A. Hammad and R. George, A solution of a fractional differential equation via novel fixed point approaches in Banach spaces, AIMS Mathematics, 8(6) (2023), 12657-12670, https://doi.org/10.3934/math.2023636.
- A. Junaid, K. Ullah, A. Imtiaz, M. Arshad, N. Jarasthitikulchai and W. Sudsutad, Some iterative approximation results of F iteration process in Banach spaces, Axioms, 11(4) (2022), 1-10, https://doi.org/10.3390/axioms11040153.
- S. Kar and P. Veeramani, Fixed point theorems for generalized nonexpansive mappings, Numer. Funct. Anal. Optim., 40(8) (2019), 888-901. https://doi.org/10.1080/01630563.2018.1564327
- A.R. Khan, H. Fukhar-Ud-din and M.A.A. Khan, An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces, Fixed Point Theory Appl., 2012(1) (2012), 1-12, https://doi.org/10.1186/1687-1812-2012-54.
- J.K. Kim, S. Dashputre and W.H. Lim, Approximation of fixed points for multi-valued nonexpansive mappings in Banach space, Global J. Pure Appl. Math., 12(6) (2016), 4901-4912.
- D. Kuna, K.S. Kalla and Sumati K. Panda, Utilizing fixed point methods in mathematical modelling, Nonlinear Funct. Anal. Appl., 28(2) (2023), 473-495.
- L. Leustean, Nonexpansive iteration in uniformly convex W- hyperbolic spaces, Nonlinear Anal. Optim., 513 (2010), 193-210, http://dx.doi.org/10.1090/conm/513/10084.
- W.R. Mann, Mean value methods in iterations, Proc. Amer. Math. Soc., 4 (1953), 506-510. https://doi.org/10.1090/S0002-9939-1953-0054846-3
- J.T. Markin, Continuous dependence of fixed point sets, Proc. Amer. Math. Soc., 38 (1973), 545-547. https://doi.org/10.1090/S0002-9939-1973-0313897-4
- S.B. Nadler, Multi-valued contraction mappings, Pac. J. Math., 30 (1969), 475-488. https://doi.org/10.2140/pjm.1969.30.475
- H. Nawab, K. Ullah and M. Arshad, Fixed point approximation of Suzuki generalized nonexpansive mappings via new faster iteration process, J. Nonlinear Convex Anal., 19(8) (2018), 1383-1393, https://doi.org/10.48550/arXiv.1802.09888.
- M.A. Noor, New approximation schemes for general variation inequality, J. Math. Anal. Appl., 251 (2000), 221-229. https://doi.org/10.1006/jmaa.2000.7042
- G.A. Okeke, D. Francis and J.K. Kim, New proofs of some fixed point theorems for mappings satisfying Reich type contractions in modular metric spaces, Nonlinear Funct. Anal. Appl., 28(1) (2023), 1-9.
- M.O. Osilike, Stability results for fixed point iteration procedures, J. Nigerian Math. Soc., 14/15 (1995/96), 17-29.
- V.K. Pathak, L.N. Mishra and V.N. Mishra, On the solvability of a class of nonlinear functional integral equations involving ErdlyiKober fractional operator, Math. Meth. Appl. Sci., (2023), https://doi.org/10.3390/fractalfract6120744.
- A.Z. Rezazgui, W. Shatanawi and A. Tallafha, Common fixed point theorems in the setting of extended quasi b-metric spaces under extended A-contraction mappings, Nonlinear Funct. Anal. Appl., 28(1) (2023), 251-263.
- A.G. Sanatee, L. Rathour, V.N. Mishra and V. Dewangan, Some fixed point theorems in regular modular metric spaces and application to Caratheodory's type anti-periodic boundary value problem, The J. Anal., 31 (2022), 619-632. https://doi.org/10.1007/s41478-022-00469-z
- K.P.R. Sastry and G.V.R. Babu, Convergence of Ishikawa iterates for a multi-valued mapping with a fixed point, Czechoslovak Math. J., 55 (2005), 817-826. https://doi.org/10.1007/s10587-005-0068-z
- C. Suanoom and C. Klin-eam, Remark on fundamentally nonexpansive mappings in hyperbolic spaces, J. Nonlinear Sci. Appl., 9 (2016), 1952-1956. https://doi.org/10.22436/jnsa.009.05.01
- D. Thakur, B.S. Thakur and M. Postolache, New iteration scheme for numerical reckoning fixed points of nonexpansive mappings, J. Inequal. Appl., 2014(1) (2014), 1-15. https://doi.org/10.1186/1029-242X-2014-1
- N.D. Truong, J.K. Kim and T.H.H. Anh, Hybrid inertial contraction projection methods extended to variational inequality problems, Nonlinear Funct. Anal. Appl., 27(1) (2022), 203-221.
- K. Ullah and M. Arshad, New three-step iteration process and fixed point approximation in Banach spaces, J. Linear Topol. Algebra, 7(2) (2018), 87-100.
- F. Vetro, Fixed point results for nonexpansive mappings on metric spaces, Filomat, 29(9) (2015), 2011-2020. https://doi.org/10.2298/FIL1509011V