DOI QR코드

DOI QR Code

APPROXIMATING COMMON FIXED POINT OF THREE MULTIVALUED MAPPINGS SATISFYING CONDITION (E) IN HYPERBOLIC SPACES

  • Austine Efut Ofem (School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal) ;
  • Godwin Chidi Ugwunnadi (Department of Mathematics, University of Eswatini, Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University) ;
  • Ojen Kumar Narain (School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal) ;
  • Jong Kyu Kim (Department of Mathematics Education, Kyungnam University)
  • Received : 2022.07.19
  • Accepted : 2023.04.12
  • Published : 2023.09.15

Abstract

In this article, we introduce the hyperbolic space version of a faster iterative algorithm. The proposed iterative algorithm is used to approximate the common fixed point of three multi-valued almost contraction mappings and three multi-valued mappings satisfying condition (E) in hyperbolic spaces. The concepts weak w2-stability involving three multi-valued almost contraction mappings are considered. Several strong and △-convergence theorems of the suggested algorithm are proved in hyperbolic spaces. We provide an example to compare the performance of the proposed method with some well-known methods in the literature.

Keywords

Acknowledgement

The fourth author was supported by the Basic Science Research Program through the National Research Foundation(NRF) Grant funded by Ministry of Education of the republic of Korea (2018R1D1A1B07045427).

References

  1. R.P. Agarwal, D. O'Regan and D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8(1) (2007), 61-79. 
  2. S. Aggarwal, I. Uddin and S. Mujahid, Convergence theorems for SP-iteration scheme in a ordered hyperbolic metric space , Nonlinear Funct Anal. Appl., 26(5) (2021), 961-969. 
  3. J. Ahmad, K. Ullah and M. Arshad, Convergence weak w2 stability, and data dependence results for the F iterative scheme in hyperbolic spaces, Nume. Algo., 91 (2022), 1755-1778, https://doi.org/10.1007/s11075-022-01321-y. 
  4. J. Ali, M. Jubair and F. Ali, Stability and convergence of F iterative scheme with an application to the fractional differential equation, Engineering with Computers, (2020), https://doi.org/10.1007/s00366-020-01172-y. 
  5. V. Berinde, Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum, 9 (2004), 43-53. 
  6. M. Berinde and V. Berinde, On a general class of multivalued weakly Picard mappings, J. Math. Anal. Appl., 326 (2007), 772-782.  https://doi.org/10.1016/j.jmaa.2006.03.016
  7. T. Cardinali and P. Rubbioni, A generalization of the Caristi fixed point theorem in metric spaces, Fixed Point Theory, 11(1) (2010), 3-10. 
  8. S. Chang, G. Wanga, L. Wanga, Y.K. Tang and Z.L. Mab, △-convergence theorems for multivalued nonexpansive, Appl. Math. Comput., 249 (2014), 535-540. 
  9. P. Chuadchawnay, A. Farajzadehz and A. Kaewcharoeny, On convergence theorems for two generalized nonexpansive multivalued mappings in hyperbolic spaces, Thai J. Math., 17(2) (2019), 445-461. 
  10. R. Chugh, V. Kumar and S. Kumar, Strong convergence of a new three step iterative scheme in Banach spaces, Amer. J. Comput. Math., 2 (2012), 345-357.  https://doi.org/10.4236/ajcm.2012.24048
  11. M. Eslamian and A. Abkar, One-step iterative process for finite family of multivalued mappings, Math. Comput. Mod., 54(1-2) (2011), 105-111.  https://doi.org/10.1016/j.mcm.2011.01.040
  12. J. Garc'ia-Falset, E. Llorens-Fuster and T. Suzuki, Fixed point theory for a class of generalized nonexpansive mappings. J. Math. Anal. Appl., 375 (2011), 185-195.  https://doi.org/10.1016/j.jmaa.2010.08.069
  13. K. Goebel and W.A. Kirk, Iteration processes for nonexpansive mappings Topological Methods in Nonlinear Functional Analysis. In: Singh SP, Thomeier S, Watson B (eds.) Contemp. Math. Amer. Math. Soc. AMS, Providence, RI., 21 (1983), 115-123.  https://doi.org/10.1090/conm/021/729507
  14. K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York, 1984. 
  15. M. Imdad and S. Dashputre, Fixed point approximation of Picard normal S-iteration process for generalized nonexpansive mappings in hyperbolic spaces, Math. Sci., 10 (2016), 131-138, DOI 10.1007/s40096-016-0187-8. 
  16. S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc., 59(1) (1976), 65-71.  https://doi.org/10.1090/S0002-9939-1976-0412909-X
  17. A.R Khan, H. Fukhar-ud-din and M.A. Khan, An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces, Fixed Point Theory Appl., 2012(54) (2012). 
  18. J.K. Kim, S. Dashputre, Padmavati and K. Sakure, Generalized α-nonexpansive mappings in hyperbolic spaces, Nonlinear Funct Anal. Appl., 27(3) (2022), 449-469. 
  19. J.K. Kim, R.P. Pathak, S. Dashputre, S.D. Diwan and R. Gupta, Convergence theorems for generalized nonexpansive multivalued mappings in hyperbolic spaces, SpringerPlus, 5 (2016), 912, DOI 10.1186/s40064-016-2557-y. 
  20. U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Tran. Amer. Math. Soc., 357(1) (2005), 89-128.  https://doi.org/10.1090/S0002-9947-04-03515-9
  21. L. Leu,stean, A quadratic rate of asymptotic regularity for CAT(0) space, J. Math. Anal. Appl., 325(1) (2007), 386-399.  https://doi.org/10.1016/j.jmaa.2006.01.081
  22. W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510.  https://doi.org/10.1090/S0002-9939-1953-0054846-3
  23. J. Markin, Continuous dependence of fixed point sets, Proc. Amer. Math. Soc., 38(1973), 545-547.  https://doi.org/10.1090/S0002-9939-1973-0313897-4
  24. S.B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475-488.  https://doi.org/10.2140/pjm.1969.30.475
  25. M.A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251(1) (2000), 217-229.  https://doi.org/10.1006/jmaa.2000.7042
  26. A.E. Ofem, J.A. Abuchu, R. George, G.C. Ugwunnadi and O.K. Narain, Some New Results on Convergence, Weak w2-Stability and Data Dependence of Two Multivalued Almost Contractive Mappings in Hyperbolic Spaces, Mathematics, 10(20) (2022), 3720. 
  27. A.E. Ofem, J.A. Abuchu, G.C. Ugwunnadi, H. Isik and O.K. Narian, On a four-step iterative algorithm and its application to delay integral equations in hyperbolic spaces, Rend. Circ. Mat. Palermo, II. Ser., (2023), https://doi.org/10.1007/s12215-023-00908-1. 
  28. A.E. Ofem, H. Isik, G.C. Ugwunnadi, R. George and O.K. Narain, Approximating the solution of a nonlinear delay integral equation by an efficient iterative algorithm in hyperbolic spaces, AIMS Mathematics, 8(7) (2023), 14919-14950.  https://doi.org/10.3934/math.2023762
  29. A.E. Ofem, U.E. Udofia and D.I. Igbokwe, A robust iterative approach for solving nonlinear Volterra Delay integro-differential equations, Ural Math. J., 7(2) (2021), 59-85.  https://doi.org/10.15826/umj.2021.2.005
  30. G.A. Okeke, A.E. Ofem, T. Abdeljawad, M.A. Alqudah and A. Khan, A solution of a nonlinear Volterra integral equation with delay via a faster iteration method, AIMS Mathematics, 8(1) (2023), 102-124.  https://doi.org/10.3934/math.2023005
  31. W. Phuengrattana and S. Suantai, On the rate off convergence of Mann, Ishikawa, Noor and SP iterations for continuous functions on an arbitrary interval, J. Comput. Appl. Math., 235 (2011), 3006-3014.  https://doi.org/10.1016/j.cam.2010.12.022
  32. S. Reich and I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal., 15 (1990), 537-558.  https://doi.org/10.1016/0362-546X(90)90058-O
  33. K. Sokhuma and K. Sokhuma, Convergence theorems for two nonlinear mappings in CAT(0) spaces, Nonlinear Funct Anal. Appl., 27(3) (2021), 499-512. 
  34. T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340(2) (2008), 1088-1095.  https://doi.org/10.1016/j.jmaa.2007.09.023
  35. B.S. Thakurr, D. Thakur and M. Postolache, A new iterative scheme for numerical reckoning of fixed points of Suzuki's generalized nonexpansive mappings, Appl. Math. Comput., 275(15) (2016), 147-155.  https://doi.org/10.1016/j.amc.2015.11.065
  36. I. Timis, On the weak stability of Picard iteration for some contractive type mappings, Annals of the University of Craiova, Math. Comput. Sci. Series, 37(2) (2010), 106-114. 
  37. V. Vairaperumal, Common fixed point theorems under rational contractions in complex valued extended b-metric spaces, Nonlinear Funct Anal. Appl., 26(4) (2021), 685-700.