Acknowledgement
The fourth author was supported by the Basic Science Research Program through the National Research Foundation(NRF) Grant funded by Ministry of Education of the republic of Korea (2018R1D1A1B07045427).
References
- R.P. Agarwal, D. O'Regan and D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8(1) (2007), 61-79.
- S. Aggarwal, I. Uddin and S. Mujahid, Convergence theorems for SP-iteration scheme in a ordered hyperbolic metric space , Nonlinear Funct Anal. Appl., 26(5) (2021), 961-969.
- J. Ahmad, K. Ullah and M. Arshad, Convergence weak w2 stability, and data dependence results for the F iterative scheme in hyperbolic spaces, Nume. Algo., 91 (2022), 1755-1778, https://doi.org/10.1007/s11075-022-01321-y.
- J. Ali, M. Jubair and F. Ali, Stability and convergence of F iterative scheme with an application to the fractional differential equation, Engineering with Computers, (2020), https://doi.org/10.1007/s00366-020-01172-y.
- V. Berinde, Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum, 9 (2004), 43-53.
- M. Berinde and V. Berinde, On a general class of multivalued weakly Picard mappings, J. Math. Anal. Appl., 326 (2007), 772-782. https://doi.org/10.1016/j.jmaa.2006.03.016
- T. Cardinali and P. Rubbioni, A generalization of the Caristi fixed point theorem in metric spaces, Fixed Point Theory, 11(1) (2010), 3-10.
- S. Chang, G. Wanga, L. Wanga, Y.K. Tang and Z.L. Mab, △-convergence theorems for multivalued nonexpansive, Appl. Math. Comput., 249 (2014), 535-540.
- P. Chuadchawnay, A. Farajzadehz and A. Kaewcharoeny, On convergence theorems for two generalized nonexpansive multivalued mappings in hyperbolic spaces, Thai J. Math., 17(2) (2019), 445-461.
- R. Chugh, V. Kumar and S. Kumar, Strong convergence of a new three step iterative scheme in Banach spaces, Amer. J. Comput. Math., 2 (2012), 345-357. https://doi.org/10.4236/ajcm.2012.24048
- M. Eslamian and A. Abkar, One-step iterative process for finite family of multivalued mappings, Math. Comput. Mod., 54(1-2) (2011), 105-111. https://doi.org/10.1016/j.mcm.2011.01.040
- J. Garc'ia-Falset, E. Llorens-Fuster and T. Suzuki, Fixed point theory for a class of generalized nonexpansive mappings. J. Math. Anal. Appl., 375 (2011), 185-195. https://doi.org/10.1016/j.jmaa.2010.08.069
- K. Goebel and W.A. Kirk, Iteration processes for nonexpansive mappings Topological Methods in Nonlinear Functional Analysis. In: Singh SP, Thomeier S, Watson B (eds.) Contemp. Math. Amer. Math. Soc. AMS, Providence, RI., 21 (1983), 115-123. https://doi.org/10.1090/conm/021/729507
- K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York, 1984.
- M. Imdad and S. Dashputre, Fixed point approximation of Picard normal S-iteration process for generalized nonexpansive mappings in hyperbolic spaces, Math. Sci., 10 (2016), 131-138, DOI 10.1007/s40096-016-0187-8.
- S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc., 59(1) (1976), 65-71. https://doi.org/10.1090/S0002-9939-1976-0412909-X
- A.R Khan, H. Fukhar-ud-din and M.A. Khan, An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces, Fixed Point Theory Appl., 2012(54) (2012).
- J.K. Kim, S. Dashputre, Padmavati and K. Sakure, Generalized α-nonexpansive mappings in hyperbolic spaces, Nonlinear Funct Anal. Appl., 27(3) (2022), 449-469.
- J.K. Kim, R.P. Pathak, S. Dashputre, S.D. Diwan and R. Gupta, Convergence theorems for generalized nonexpansive multivalued mappings in hyperbolic spaces, SpringerPlus, 5 (2016), 912, DOI 10.1186/s40064-016-2557-y.
- U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Tran. Amer. Math. Soc., 357(1) (2005), 89-128. https://doi.org/10.1090/S0002-9947-04-03515-9
- L. Leu,stean, A quadratic rate of asymptotic regularity for CAT(0) space, J. Math. Anal. Appl., 325(1) (2007), 386-399. https://doi.org/10.1016/j.jmaa.2006.01.081
- W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510. https://doi.org/10.1090/S0002-9939-1953-0054846-3
- J. Markin, Continuous dependence of fixed point sets, Proc. Amer. Math. Soc., 38(1973), 545-547. https://doi.org/10.1090/S0002-9939-1973-0313897-4
- S.B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475-488. https://doi.org/10.2140/pjm.1969.30.475
- M.A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251(1) (2000), 217-229. https://doi.org/10.1006/jmaa.2000.7042
- A.E. Ofem, J.A. Abuchu, R. George, G.C. Ugwunnadi and O.K. Narain, Some New Results on Convergence, Weak w2-Stability and Data Dependence of Two Multivalued Almost Contractive Mappings in Hyperbolic Spaces, Mathematics, 10(20) (2022), 3720.
- A.E. Ofem, J.A. Abuchu, G.C. Ugwunnadi, H. Isik and O.K. Narian, On a four-step iterative algorithm and its application to delay integral equations in hyperbolic spaces, Rend. Circ. Mat. Palermo, II. Ser., (2023), https://doi.org/10.1007/s12215-023-00908-1.
- A.E. Ofem, H. Isik, G.C. Ugwunnadi, R. George and O.K. Narain, Approximating the solution of a nonlinear delay integral equation by an efficient iterative algorithm in hyperbolic spaces, AIMS Mathematics, 8(7) (2023), 14919-14950. https://doi.org/10.3934/math.2023762
- A.E. Ofem, U.E. Udofia and D.I. Igbokwe, A robust iterative approach for solving nonlinear Volterra Delay integro-differential equations, Ural Math. J., 7(2) (2021), 59-85. https://doi.org/10.15826/umj.2021.2.005
- G.A. Okeke, A.E. Ofem, T. Abdeljawad, M.A. Alqudah and A. Khan, A solution of a nonlinear Volterra integral equation with delay via a faster iteration method, AIMS Mathematics, 8(1) (2023), 102-124. https://doi.org/10.3934/math.2023005
- W. Phuengrattana and S. Suantai, On the rate off convergence of Mann, Ishikawa, Noor and SP iterations for continuous functions on an arbitrary interval, J. Comput. Appl. Math., 235 (2011), 3006-3014. https://doi.org/10.1016/j.cam.2010.12.022
- S. Reich and I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal., 15 (1990), 537-558. https://doi.org/10.1016/0362-546X(90)90058-O
- K. Sokhuma and K. Sokhuma, Convergence theorems for two nonlinear mappings in CAT(0) spaces, Nonlinear Funct Anal. Appl., 27(3) (2021), 499-512.
- T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340(2) (2008), 1088-1095. https://doi.org/10.1016/j.jmaa.2007.09.023
- B.S. Thakurr, D. Thakur and M. Postolache, A new iterative scheme for numerical reckoning of fixed points of Suzuki's generalized nonexpansive mappings, Appl. Math. Comput., 275(15) (2016), 147-155. https://doi.org/10.1016/j.amc.2015.11.065
- I. Timis, On the weak stability of Picard iteration for some contractive type mappings, Annals of the University of Craiova, Math. Comput. Sci. Series, 37(2) (2010), 106-114.
- V. Vairaperumal, Common fixed point theorems under rational contractions in complex valued extended b-metric spaces, Nonlinear Funct Anal. Appl., 26(4) (2021), 685-700.