Acknowledgement
이 연구는 기상청 국립기상과학원 「기후예측 현업시스템 운영 및 개발」(KMA2018-00322)의 지원으로 수행되었습니다. 검증을 위한 SST 및 MLD 자료는 ECMWF의 Copernicus Climate Data Store 포털 (CDS)에서, CryoSat-2 해빙 두께 자료는 www.cpom.ucl.ac.uk/csopr에서 입수하였다.
References
- Amante, C., and B. W. Eakins, 2009: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, 19 pp, doi:10.7289/V5C8276M.
- Balmaseda, M., and D. Anderson, 2009: Impact of initialization strategies and observations on seasonal forecast skill. Geophys. Res. Lett., 36, L01701, doi: 10.1029/2008GL035561.
- Barnier, B., and Coauthors, 2006: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn., 56, 543-567, doi:10.1007/s10236-006-0082-1.
- Bigg, G. R., M. R. Wadley, D. P. Stevens, and J. A. Johnson, 1997: Modelling dynamics and thermodynamics of icebergs. Cold Reg. Sci. Technol., 26, 113-135, doi:10.1016/S0165-232X(97)00012-8.
- Bitz, C. M., and W. H. Lipscomb, 1999: An energy-conserving thermodynamic model of sea ice. J. Geophys. Res.-Oceans, 104, 15669-15677, doi:10.1029/1999JC900100.
- Blockley, E. W., and Coauthors, 2014: Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts. Geosci. Model Dev., 7, 2613-2638, doi:10.5194/gmd-7-2613-2014.
- C3S CDS, 2021: ORAS5 global ocean reanalysis monthly data from 1958 to present. Copernicus Climate Change Service (C3S), Climate Data Store (CDS). doi: 10.24381/cds.67s.67e8eeb7.
- Chang, P.-H., S.-O. Hwang, S.-H. Choo, J. Lee, S.-M. Lee, and K.-O. Boo, 2021: Global Ocean Data Assimilation and Prediction System in KMA: Description and assessment. Atmosphere, 31, 229-240, doi:10.14191/Atmos.2021.31.2.229 (in Korean with English abstract).
- Ducousso, N., J. L. Sommer, J.-M. Molines, and M. Bell, 2017: Impact of the "Symmetric Instability of the Computational Kind" at mesoscale-and submesosacle-permitting resoulutions. Ocean Modelling, 120, 18-26, doi:10.1016/j.oceamod.2017.10.006.
- Fiedler, E., C. Mao, S. Good, J. Waters, and M. Martin, 2019: Improvements to feature resolution in the OSTIA sea surface temperature analysis using the NEMOVAR assimilation scheme. Quart. J. Roy. Meteor. Soc., 145, 3609-3625, doi:10.1002/qj.3644.
- Flocco, D., D. L. Feltham, and A. K. Turner, 2010: Incorporation of a physically based melt pond scheme into the sea ice component of a climate model. J. Geophys. Res.-Oceans, 115, C08012, doi:10.1029/2009JC005568.
- Flocco, D., D. Schroeder, D. L. Feltham, and E. C. Hunke, 2012: Impact of melt ponds on Arctic sea ice simulations from 1990 to 2007. J. Geophys. Res. Oceans, 117, C09032, doi:10.1029/2012JC008195.
- Gaspar, P., Y. Gregoris, and J.-M. Lefevre, 1990: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and long-term upper ocean study site. J. Geophys. Res. Oceans, 95, 16179-16193, doi:10.1029/JC095iC09p16179.
- Griffies, S. M., and Coauthors, 2015: Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Climate, 28, 952-977, doi:10.1175/JCLI-D-14-00353.1.
- Hollingsworth, A., P. Kallberg, V. Renner, and D. M. Burridge, 1983: An internal symmetric computational instability. Quart. J. Roy. Meteor. Soc., 109, 417-428, doi:10.1002/qj.49710946012.
- Hunke, E. C., W. H. Lipscomb, A. K. Turner, N. Jeffery, and S. Elliot, 2015: CICE: the Los Alamos sea ice model, documentation and user's manual version 5.1, Los Alamos National Laboratory, USA, LA-CC-06-012, [Available online at https://svn-ccsm-models.cgd. ucar.edu/cesm1/alphas/branches/cesm1_5_alpha04c_-timers/components/cice/src/doc/cicedoc.pdf].
- IOC, IHO and BODC, 2003: Centenary Edition of the GEBCO Digital Atlas, published on CD-ROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the General Bathymetric Chart of the Oceans, British Oceanographic Data Centre, Liverpool, UK.
- Kim, H., J. Lee, Y.-K. Hyun, and S.-O. Hwang, 2021: The KMA Global Seasonal forecasting system (GloSea6) - Part 1: Operational system and improvements. Atmosphere, 31, 341-359, doi:10.14191/Atmos.2021.31.3. 341 (in Korean with English abstract).
- Madec, G., 2016: NEMO ocean engine. Note du Pole de modelisation de l'Institut Pierre-Simon Laplace No 27, [Available online at https://www.nemo-ocean.eu/doc/].
- Marsh, R., and Coauthors, 2015: NEMO-ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at eddy-permitting resolution. Geosci. Model Dev., 8, 1547-1562, doi:10.5194/gmd-8-1547-2015.
- Martin, M. J., and Coauthors, 2017: Recent developments in global oean data assimilation using NEMOVAR at the Met Office. GOV DA-TT meeting, La Spezia. [Available online at https://www.godae.org/~godae-data/OceanView/Events/DA-OSEval-TT-2017/2.2-FOAMDA_MM_Oct2017.pdf].
- Mathiot, P., A. Jenkins, C. Harris, and G. Madec, 2017: Explicit representation and parametrised impacts of under ice shelf seas in the z* coordinate ocean model NEMO 3.6. Geosci. Model Dev., 10, 2849-2874, doi:10.5194/gmd-10-2849-2017.
- Merchant, C. J., and Coauthors, 2019: Satellite-based time-series of sea-surface temperature since 1981 for climate applications. Sci. Data, 6, 223, doi:10.1038/s41597-019-0236-x.
- Mirouze, I., and A. T. Weaver, 2010: Representation of correlation functions in variational assimilation using and implicit diffusion operator. Quart. J. Roy. Meteor. Soc., 136, 1421-1443, doi:10.1002/qj.643.
- Ridley, J. K., E. W. Blockley, A. B. Keen, J. G. L. Rae, A. E. West, and D. Schroeder, 2018: The sea ice model component of HadGEM3-GC3.1. Geosci. Model Dev., 11, 713-723, doi:10.5194/gmd-11-713-2018.
- Rodgers, K. B., and Coauthors, 2014: Strong sensitivity of Southern Ocean carbon uptake and nutrient cycling to wind stirring. Biogeosciences, 11, 4077-4098, doi: 10.5194/bg-11-4077-2014.
- Semtner Jr, A. J., 1976: A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6, 379-389, doi:10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2.
- Storkey, D., and Coauthors, 2018: UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions. Geosci. Model Dev., 11, 3187-3213, doi:10.5194/gmd-11-3187-2018.
- Thorndike, A. S., D. A. Rothrock, G. A. Maykut, and R. Colony, 1975: The thickness distribution of sea ice. J. Geophys. Res., 80, 4501-4513, doi:10.1029/JC080i033p04501.
- Tilling, R. L., A. Ridout, and A. Shepherd, 2016: Near-real-time Arctic sea ice thickness and volume from CryoSat-2, The Cr yospher e, 10, 2003-2012, doi: 10.5194/tc-10-2003-2016.
- Walters, D. N., and Coauthors, 2019: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geosci. Model Dev., 12, 1909-1963, doi:10.5194/gmd-12-1909-2019.
- Waters, J., M. J. Bell, M. J. Martin, and D. J. Lea, 2017: Reducing ocean model imbalances in the equatorial region caused by data assimilation. Quart. J. Roy. Meteor. Soc., 143, 195-208, doi:10.1002/qj.2912.
- Weaver. A. T., C. Deltel, E. Machu, S. Ricc, and N. Daget, 2005: A multivariate balance operator for variational ocean data assimilation. Quart. J. Roy. Meteor. Soc., 131, 3605-3625, doi:10.1256/qj.05.119.
- While, J., and M. J. Martin, 2019: Variational bias correction of satellite sea-surface temperature data incorporating observations of the bias. Quart. J. Roy. Meteor. Soc., 145, 2733-2754, doi:10.1002/qj.3590.
- Williams, K. D., and Coauthors, 2017: The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) configurations. J. Adv. Model. Earth Sys., 10, 357-380, doi:10.1002/2017MS001115.