Acknowledgement
이 논문은 기상청 국립기상과학원 「수도권 위험기상 입체관측 및 예보활용 기술 개발」 (KMA2018-00125)과 2023년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원으로 수행되었습니다(2023R1A2C3005607).
References
- Adler, R. F., and Coauthors, 2018: The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138, doi:10.3390/atmos9040138.
- Bao, J.-W., S. A. Michelson, P. J. Neiman, F. M. Ralph, and J. M. Wilczak, 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Mon. Wea. Rev., 134, 1063-1080, doi:10.1175/MWR3123.1.
- Chen, L.-C., Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, 2018: Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European conference on computer vision (ECCV), 15, 801-818, doi:10.48550/arXiv.1802.02611.
- Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2011: Atmospheric rivers, floods and the water resources of California. Water, 3, 445-478, doi:10.3390/w3020445.
- Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2013: Atmospheric rivers as drought busters on the US West Coast. J. Hydrometeor., 14, 1721-1732, doi:10.1175/JHM-D-13-02.1.
- Espinoza, V., D. E. Waliser, B. Guan, D. A. Lavers, and F. M. Ralph, 2018: Global analysis of climate change projection effects on atmospheric rivers. Geophys. Res. Lett., 45, 4299-4308, doi:10.1029/2017GL076968.
- Gimeno, L., and Coauthors, 2016: Major mechanisms of atmospheric moisture transport and their role in extreme precipitation events. Annu. Rev. Environ. Res., 41, 117-141, doi:10.1146/annurev-environ-110615-085558.
- Goldenson, N., L. R. Leung, C. M. Bitz, and E. Blanchard-Wrigglesworth, 2018: Influence of atmospheric rivers on mountain snowpack in the western United States. J. Climate, 31, 9921-9940, doi:10.1175/JCLID-18-0268.1.
- Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman, 2010: Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys. Res. Lett., 37, L20401, doi:10.1029/2010GL044696.
- Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmospheres, 120, 12514-12535, doi:10.1002/2015JD024257.
- Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999-2049, doi:10.1002/qj.3803.
- Higgins, T. B., and Coauthors, 2023: Using deep learning for an analysis of atmospheric rivers in a high-resolution large ensemble climate data set. J. Adv. Modeling Earth Syst., 15, e2022MS003495, doi:10.1029/2022MS003495.
- Kamae, Y., W. Mei, and S.-P. Xie, 2017a: Climatological relationship between warm season atmospheric rivers and heavy rainfall over East Asia. J. Meteor. Soc. Japan. Ser. II, 95, 411-431, doi:10.2151/jmsj.2017-027.
- Kamae, Y., W. Mei, S.-P. Xie, M. Naoi, and H. Ueda, 2017b: Atmospheric rivers over the northwestern Pacific: Climatology and interannual variability. J. Climate, 30, 5605-5619, doi:10.1175/JCLI-D-16-0875.1.
- Kashinath, K., and Coauthors, 2021: ClimateNet: An expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather. Geoscientific Model Development, 14, 107-124, doi:10.5194/gmd-14-107-2021.
- Kim, J., H. Moon, B. Guan, D. E. Waliser, J. Choi, T.-Y Gu, and Y.-H. Byun, 2021: Precipitation characteristics related to atmospheric rivers in East Asia. Int. J. Climatol., 41, E2244-E2257, doi:10.1002/joc.6843.
- Konrad, C. P., and M. D. Dettinger, 2017: Flood runoff in relation to water vapor transport by atmospheric rivers over the western United States, 1949~2015. Geophys. Res. Lett., 44, 11456-11462, doi:10.1002/2017GL075399.
- Kwon, Y., C. Park, S.-Y. Back, S.-W. Son, J. Kim, and E. J. Cha, 2022: Influence of atmospheric rivers on regional precipitation in South Korea. Atmosphere, 32, 135-148, doi:10.14191/Atmos.2022.32.2.135.
- Lavers, D. A., G. Villarini, R. P. Allan, E. F. Wood, and A. J. Wade, 2012: The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J. Geophys. Res. Atmospheres, 117, 13 pp doi: 10.1029/2012JD018027.
- Liang, J., and Y. Yong, 2021: Climatology of atmospheric rivers in the Asian monsoon region. Int. J. Climatol., 41, E801-E818, doi:10.1002/joc.6729.
- Moon, H., J. Kim, B. Guan, D. E. Waliser, J. Choi, T.-Y. Goo, Y. Kim, and Y.-H. Byun, 2019: The effects of atmospheric river landfalls on precipitation and temperature in Korea. Atmosphere, 29, 343-353, doi: 10.14191/Atmos.2019.29.4.343.
- Mundhenk, B. D., E. A. Barnes, and E. D. Maloney, 2016: All-season climatology and variability of atmospheric river frequencies over the North Pacific. J. Climate, 29, 4885-4903, doi:10.1175/JCLI-D-15-0655.1.
- Muszynski, G., K. Kashinath, V. Kurlin, M. Wehner, and Prabhat, 2019: Topological data analysis and machine learning for recognizing atmospheric river patterns in large climate datasets. Geoscientific Model Development, 12, 613-628, doi:10.5194/gmd-12-613-2019.
- Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 1337-1358, doi:10.1175/2011JHM1358.1.
- Newman, M., G. N. Kiladis, K. M. Weickmann, F. M. Ralph, and P. D. Sardeshmukh, 2012: Relative contributions of synoptic and low-frequency eddies to time-mean atmospheric moisture transport, including the role of atmospheric rivers. J. climate, 25, 7341-7361, doi:10.1175/JCLI-D-11-00665.1.
- O'Brien, T. A., and Coauthors, 2022: Increases in future AR count and size: Overview of the ARTMIP Tier 2 CMIP5/6 experiment. J. Geophys. Res. Atmospheres, 127, e2021JD036013, doi:10.1029/2021JD036013.
- Pan, M., and M. Lu, 2019: A novel atmospheric river identification algorithm. Water Resour. Res., 55, 6069-6087, doi:10.1029/2018WR024407.
- Pan, M., and M. Lu, 2020: East Asia atmospheric river catalog: Annual cycle, transition mechanism, and precipitation. Geophys. Res. Lett., 47, e2020GL089477, doi:10.1029/2020GL089477.
- Park, C., S.-W. Son, and H. Kim, 2021: Distinct features of atmospheric rivers in the early versus late East Asian summer monsoon and their impacts on monsoon rainfall. J. Geophys. Res. Atmospheres, 126, e2020- JD033537, doi:10.1029/2020JD033537.
- Radic, V., A. J. Cannon, B. Menounos, and N. Gi, 2015: Future changes in autumn atmospheric river events in British Columbia, Canada, as projected by CMIP5 global climate models. J. Geophys. Res. Atmospheres, 120, 9279-9302, doi:10.1002/2015JD023279.
- Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the El Nino winter of 1997/98. Mon. Wea. Rev., 132, 1721-1745, doi:10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.
- Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California's Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, doi:10.1029/2006GL026689.
- Ralph, F. M., and M. D. Dettinger, 2012: Historical and national perspectives on extreme West Coast precipitation associated with atmospheric rivers during December 2010. Bulletin of the American Meteorological Society, 93, 783-790, doi:10.1175/BAMS-D-11-00188.1.
- Ronneberger, O., P. Fischer, and T. Brox, 2015: U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, 9351, 234-241, doi:10.1007/978-3-319-24574-4_28.
- Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905-921, doi:10.1175/MWR-D-13-00168.1.
- Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, and Coauthors, 2019: The atmospheric river tracking method intercomparison project (ARTMIP): quantifying uncertainties in atmospheric river climatology. J. Geophys. Res. Atmospheres, 124, 13777- 13802, doi:10.1029/2019JD030936.
- Shields, C. A., and Coauthors, 2018: Atmospheric river tracking method intercomparison project (ARTMIP): project goals and experimental design. Geoscientific Model Development, 11, 2455-2474, doi:10.5194/gmd-11-2455-2018.
- Tia n, Y., Y. Zha o, S.-W. Son, J.-J. Luo, S.-G. Oh, a nd Y. Wang, 2023: A deep-learning ensemble method to detect atmospheric rivers and its application to projected changes in precipitation regime. J. Geophys. Res. Atmospheres, 128, e2022JD037041, doi:10.1029/2022JD037041.
- Wang, P., P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and G. Cottrell, 2018: Understanding convolution for semantic segmentation. In 2018 IEEE winter conference on applications of computer vision (WACV), 1451-1460, doi:10.1109/WACV.2018.00163.
- Wick, G. A., P. J. Neiman, F. M. Ralph, and T. M. Hamill, 2013: Evaluation of forecasts of the water vapor signature of atmospheric rivers in operational numerical weather prediction models. Wea. Forecasting, 28, 1337-1352, doi:10.1175/WAF-D-13-00025.1.
- Wu, T., S. Tang, R. Zhang, J. Cao, and Y. Zhang, 2020: Cgnet: A light-weight context guided network for semantic segmentation. IEEE Trans. Image Processing, 30, 1169-1179, doi:10.1109/TIP.2020.3042065.
- Yang, Y., T. Zhao, G. Ni, and T. Sun, 2018: Atmospheric rivers over the Bay of Bengal lead to northern Indian extreme rainfall. Int. J. Climatol., 38, 1010-1021, doi:10.1002/joc.5229.
- Zhao, H., J. Shi, X. Qi, X. Wang, and J. Jia, 2017: Pyramid scene parsing network. Computer Vision and Pattern Recognition, 2881-2890, doi:10.1109/cvpr.2017.660.
- Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725-735, doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.