DOI QR코드

DOI QR Code

Evaluation of Accuracy and Efficiency of Double Fourier Series (DFS) Spectral Dynamical Core

이중 푸리에 급수 분광법 역학코어의 정확도와 계산 효율성 평가

  • Beom-Seok Kim (School of Earth and Environmental Sciences, Seoul National University) ;
  • Myung-Seo Koo (Korea Institute of Atmospheric Prediction Systems) ;
  • Seok-Woo Son (School of Earth and Environmental Sciences, Seoul National University)
  • 김범석 (서울대학교 지구환경과학부) ;
  • 구명서 (차세대수치예보모델개발사업단) ;
  • 손석우 (서울대학교 지구환경과학부)
  • Received : 2023.06.29
  • Accepted : 2023.08.08
  • Published : 2023.08.31

Abstract

The double Fourier series (DFS) spectral dynamical core is evaluated for the two idealized test cases in comparison with the spherical harmonics (SPH) spectral dynamical core. A new approach in calculating the meridional expansion coefficients of DFS, which was recently developed to alleviate a computational error but only applied to the 2D spherical shallow water equation, is also tested. In the 3D deformational tracer transport test, the difference is not conspicuous between SPH and DFS simulations, with a slight outperformance of the new DFS approach in terms of undershooting problem. In the baroclinic wave development test, the DFS-simulated wave pattern is quantitatively similar to the SPH-simulated one at high resolutions, but with a substantially lower computational cost. The new DFS approach does not offer a salient advantage compared to the original DFS while computation cost slightly increases. This result suggests that the current DFS spectral method can be a practical and alternative dynamical core for high-resolution global modeling.

Keywords

Acknowledgement

본 논문의 개선을 위해 좋은 의견을 제시해 주신 두 분의 심사위원께 감사를 드립니다. 이 연구는 환경부의 재원을 지원받아 한국환경산업기술원 "신기후 체제 대응 환경기술개발사업"의 연구개발을 통해 창출되었습니다(2022003560004).

References

  1. Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100, 487-490, doi:10.1175/1520-0493(1972)100<0487:FFFTI>2.3.CO;2.
  2. Boyd, J. P., 1978: The choice of spectral functions on a sphere for boundary and eigenvalue problems: A comparison of Chebyshev, Fourier and associated Legendre expansions. Mon. Wea. Rev., 106, 1184-1191, doi:10.1175/1520-0493(1978)106<1184:TCOSFO>2.0.CO;2.
  3. Cheong, H.-B., 2000a: Double Fourier series on a sphere: applications to elliptic and vorticity equations. J. Comput. Phys., 157, 327-349, doi:10.1006/jcph.1999.6385.
  4. Cheong, H.-B., 2000b: Application of double Fourier series to shallow water equations on a sphere. J. Comput. Phys., 165, 261-287, doi:10.1006/jcph.2000.6615.
  5. Cheong, H.-B., 2006: A dynamical core with double Fourier series: Comparison with the spherical harmonics method. Mon. Wea. Rev., 134, 1299-1315, doi:10.1175/MWR3121.1.
  6. Cheong, H.-B., I.-H. Kwon, and T.-Y. Goo, 2004: Further study on the high-order double-Fourier-series spectral filtering on a sphere. J. Comput. Phys., 193, 180-197, doi: 10.1016/j.jcp.2003.07.029.
  7. Cheong, H.-B., I.-H. Kwon, T.-Y. Goo, and M.-J. Lee, 2002: High-order harmonic spectral filter with the double Fourier series on a sphere. J. Comput. Phys., 177, 313-335, doi: 10.1006/jcph.2002.6997.
  8. Choi, S.-J., and S.-Y. Hong, 2016: A global non-hydrostatic dynamical core using the spectral element method on a cubed-sphere grid. Asia-Pac. J. Atmos. Sci., 52, 291-307, doi:10.1007/s13143-016-0005-0.
  9. Cooley, J. W., and J. W. Tukey, 1965: An algorithm for the machine calculation of complex Fourier series. Math. Comput., 19, 297-301, doi:10.2307/2003354.
  10. Diamantakis, M., and F. Vana, 2022: A fast converging and concise algorithm for computing the departure points in semi-lagrangian weather and climate models. Quart. J. Roy. Meteor. Soc., 148, 670-684, doi:10.1002/qj.4224.
  11. Hong, S.-Y., and Coauthors, 2013: The Global/Regional Integrated Model system (GRIMs). Asia-Pac. J. Atmos. Sci., 49, 219-243, doi:10.1007/s13143-013-0023-0.
  12. Hortal, M., and A. J. Simmons, 1991: Use of Reduced Gaussian Grids in Spectral Models. Mon. Wea. Rev., 119, 1057-1074, doi:10.1175/1520-0493(1991)119<1057:UORGGI>2.0.CO;2.
  13. Hoskins, B. J., and A. J. Simmons, 1975: A multi-layer spectral model and the semi-implicit method. Quart. J. Roy. Meteor. Soc., 101, 637-655, doi:10.1002/qj.49710142918.
  14. Jablonowski, C., and D. L. Williamson, 2006: A baroclinic instability test case for atmospheric model dynamical cores. Quart. J. Roy. Meteor. Soc., 132, 2943-2975, doi:10.1256/qj.06.12.
  15. Kanamitsu, M., 1989: Description of the NMC global data assimilation and forecast system. Wea. Forecasting, 4, 335-342, doi:10.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2.
  16. Koo, M.-S., and S.-Y. Hong, 2013: Double Fourier series dynamical core with hybrid sigma-pressure vertical coordinate. Tellus A, 65, 19851, doi:10.3402/tellusa.v65i0.19851.
  17. Koo, M.-S., and S.-Y. Hong, and Coauthors, 2023: The Global/Regional Integrated Model System (GRIMs): an Update and Seasonal Evaluation. Asia-Pac. J. Atmos. Sci., 59, 113- 132, doi:10.1007/s13143-022-00297-y.
  18. Lauritzen, P. H., and J. Thuburn, 2012: Evaluating advection/transport schemes using interrelated tracers, scatter plots and numerical mixing diagnostics. Quart. J. Roy. Meteor. Soc., 138, 906-918, doi:10.1002/qj.986.
  19. Merilees, P. E., 1973: An alternative scheme for the simulation of a series of spherical harmonics. J. Appl. Meteor. Climatol., 12, 224-227, doi:10.1175/1520-0450(1973)012<0224:AASFTS>2.0.CO;2.
  20. Nair, R. D., and P. H. Lauritzen, 2010: A class of deformational flow test cases for linear transport problems on the sphere. J. Comput. Phys., 229, 8868-8887, doi:10.1016/j.jcp.2010.08.014.
  21. Orszag, S. A., 1974: Fourier series on spheres. Mon. Wea. Rev., 102, 56-75, doi:10.1175/1520-0493(1974)102<0056:FSOS>2.0.CO;2.
  22. Park, H., S.-Y. Hong, H.-B. Cheong, and M.-S. Koo, 2013: A Double Fourier Series (DFS) Dynamical Core in a Global Atmospheric Model with Full Physics. Mon. Wea. Rev., 141, 3052-3061, doi:10.1175/MWR-D-12-00270.1.
  23. Robert, A. J., 1966: The integration of a low order spectral form of the primitive meteorological equations. J. Meteor. Soc. Japan, 44, 237-245, doi:10.2151/jmsj1965.44.5_237.
  24. Sela, J. G., 1980: Spectral modeling at the National Meteorological Center. Mon. Wea. Rev., 108, 1279-1292, doi:10.1175/1520-0493(1980)108<1279:SMATNM>2.0.CO;2.
  25. Suda, R., 2005: Fast spherical harmonic transform routine FLTSS applied to the shallow water test set. Mon. Wea. Rev., 133, 634-648, doi:10.1175/MWR-2871.1.
  26. Tygert, M., 2008: Fast algorithms for spherical harmonic expansions, II. J. Comput. Phys., 227, 4260-4279, doi:10.1016/j.jcp.2007.12.019.
  27. Ullrich, P. A., C. Jablonowski, J. Kent, P. H. Lauritzen, R. D. Nair, and M. A. Taylor, 2012: Dynamical core model intercomparison project (DCMIP) test case document, 83 pp [Available online at http://www-personal.umich.edu/~cjablono/DCMIP2012_TestCaseDocument_v1.7.pdf].
  28. Ullrich, P. A., C. Jablonowski, J. Kent, P. H. Lauritzen, R. D. Nair, and M. A. Taylor, and Couthors, 2017: DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models. Geosci. Model Dev., 10, 4477-4509, doi:10.5194/gmd-10-4477-2017.
  29. Williamson D. L., 2007: The evolution of dynamical cores for global atmospheric models. J. Meteor. Soc. Japan, 85B, 241-269, doi:10.2151/jmsj.85B.241.
  30. Yee, S. Y. K., 1981: Solution of Poisson's equation on a sphere by truncated double Fourier series. Mon. Wea. Rev., 109, 501-505, doi:10.1175/1520-0493(1981)109<0501:SOPEOA>2.0.CO;2.
  31. Yoshimura, H., 2022: Improved double Fourier series on a sphere and its application to a semi-implicit semiLagrangian shallow water model. Geosci. Model Dev., 15, 2561-2597, doi:10.5194/gmd-2021-168.