과제정보
This work was supported by the Basic Study and Interdisciplinary R&D Foundation Fund from the University of Seoul (2021-2022) granted to E.S.H.
참고문헌
- Allaire, J., Maltais, F., LeBlanc, P., Simard, P.M., Whittom, F., Doyon, J.F., Simard, C., and Jobin, J. (2002). Lipofuscin accumulation in the vastus lateralis muscle in patients with chronic obstructive pulmonary disease. Muscle Nerve 25, 383-389. https://doi.org/10.1002/mus.10039
- Blommaart, E.F., Krause, U., Schellens, J.P., Vreeling-Sindelarova, H., and Meijer, A.J. (1997). The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem. 243, 240-246. https://doi.org/10.1111/j.1432-1033.1997.0240a.x
- Boulton, M., Davies, S. and Ellis, S. (1999). Lipofuscin turnover. Invest. Ophthalmol. Vis. Sci. 40, 1887-1888.
- Brunk, U.T. and Terman, A. (2002). The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur. J. Biochem. 269, 1996-2002. https://doi.org/10.1046/j.1432-1033.2002.02869.x
- Brunk, U.T., Jones, C.B., and Sohal, R.S. (1992). A novel hypothesis of lipofuscinogenesis and cellular aging based on interactions between oxidative stress and autophagocytosis. Mutat. Res. 275, 395-403. https://doi.org/10.1016/0921-8734(92)90042-N
- Cho, S., Park, J., and Hwang, E.S. (2011). Kinetics of the cell biological changes occurring in the progression of DNA damage-induced senescence. Mol. Cells 31, 539-546. https://doi.org/10.1007/s10059-011-1032-4
- Fang, Y., Taubitz, T., Tschulakow, A.V., Heiduschka, P., Szewczyk, G., Burnet, M., Peters, T., Biesemeier, A., Sarna, T., Schraermeyer, U., et al. (2022). Removal of RPE lipofuscin results in rescue from retinal degeneration in a mouse model of advanced Stargardt disease: role of reactive oxygen species. Free Radic. Biol. Med. 182, 132-149. https://doi.org/10.1016/j.freeradbiomed.2022.02.025
- Goodwin, E.C., Yang, E., Lee, C.J., Lee, H.W., DiMaio, D., and Hwang, E.S. (2000). Rapid induction of senescence in human cervical carcinoma cells. Proc. Natl. Acad. Sci. U. S. A. 97, 10978-10983. https://doi.org/10.1073/pnas.97.20.10978
- Grabowska, W., Sikora, E., and Bielak-Zmijewska, A. (2017). Sirtuins, a promising target in slowing down the ageing process. Biogerontology 18, 447-476. https://doi.org/10.1007/s10522-017-9685-9
- Guerrero-Navarro, L., Jansen-Durr, P., and Cavinato, M. (2022). Age-related lysosomal dysfunctions. Cells 11, 1977.
- Herranz, D., Munoz-Martin, M., Canamero, M., Mulero, F., Martinez-Pastor, B., Fernandez-Capetillo, O., and Serrano, M. (2010). Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun. 1, 3.
- Hohn, A., Konig, J., and Grune, T. (2013). Protein oxidation in aging and the removal of oxidized proteins. J. Proteomics 92, 132-159. https://doi.org/10.1016/j.jprot.2013.01.004
- Hohn, A., Sittig, A., Jung, T., Grimm, S., and Grune, T. (2012). Lipofuscin is formed independently of macroautophagy and lysosomal activity in stress-induced prematurely senescent human fibroblasts. Free Radic. Biol. Med. 53, 1760-1769. https://doi.org/10.1016/j.freeradbiomed.2012.08.591
- Huang, R. and Liu, W. (2015). Identifying an essential role of nuclear LC3 for autophagy. Autophagy 11, 852-853. https://doi.org/10.1080/15548627.2015.1038016
- Huang, R., Xu, Y., Wan, W., Shou, X., Qian, J., You, Z., Liu, B., Chang, C., Zhou, T., Lippincott-Schwartz, J., et al. (2015). Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol. Cell 57, 456-466. https://doi.org/10.1016/j.molcel.2014.12.013
- Jolly, R.D., Palmer, D.N., and Dalefield, R.R. (2002). The analytical approach to the nature of lipofuscin (age pigment). Arch. Gerontol. Geriatr. 34, 205-217. https://doi.org/10.1016/S0167-4943(01)00219-9
- Julien, S. and Schraermeyer, U. (2012). Lipofuscin can be eliminated from the retinal pigment epithelium of monkeys. Neurobiol. Aging 33, 2390-2397. https://doi.org/10.1016/j.neurobiolaging.2011.12.009
- Kang, H.T., Lee, H.I., and Hwang, E.S. (2006). Nicotinamide extends replicative lifespan of human cells. Aging Cell 5, 423-436. https://doi.org/10.1111/j.1474-9726.2006.00234.x
- Kang, H.T., Park, J.T., Choi, K., Kim, Y., Choi, H.J.C., Jung, C.W., Lee, Y.S., and Park, S.C. (2017). Chemical screening identifies ATM as a target for alleviating senescence. Nat. Chem. Biol. 13, 616-623. https://doi.org/10.1038/nchembio.2342
- Katz, M.L., Rice, L.M., and Gao, C.L. (1999). Reversible accumulation of lipofuscin-like inclusions in the retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 40, 175-181.
- Kwak, J.Y., Ham, H.J., Kim, C.M., and Hwang, E.S. (2015). Nicotinamide exerts antioxidative effects on senescent cells. Mol. Cells 38, 229-235. https://doi.org/10.14348/molcells.2015.2253
- Li, W.W., Wang, H.J., Tan, Y.Z., Wang, Y.L., Yu, S.N., and Li, Z.H. (2021). Reducing lipofuscin accumulation and cardiomyocytic senescence of aging heart by enhancing autophagy. Exp. Cell Res. 403, 112585.
- Moreno-Garcia, A., Kun, A., Calero, O., Medina, M., and Calero, M. (2018). An overview of the role of lipofuscin in age-related neurodegeneration. Front. Neurosci. 12, 464.
- Parzych, K.R. and Klionsky, D.J. (2014). An overview of autophagy: morphology, mechanism, and regulation. Antioxid. Redox Signal. 20, 460-473. https://doi.org/10.1089/ars.2013.5371
- Porta, E.A. (2002). Pigments in aging: an overview. Ann. N. Y. Acad. Sci. 959, 57-65. https://doi.org/10.1111/j.1749-6632.2002.tb02083.x
- Radu, R.A., Hu, J., Yuan, Q., Welch, D.L., Makshanoff, J., Lloyd, M., McMullen, S., Travis, G.H., and Bok, D. (2011). Complement system dysregulation and inflammation in the retinal pigment epithelium of a mouse model for Stargardt macular degeneration. J. Biol. Chem. 286, 18593-18601. https://doi.org/10.1074/jbc.M110.191866
- Singh Kushwaha, S., Patro, N., and Kumar Patro, I. (2019). A sequential study of age-related lipofuscin accumulation in hippocampus and striate cortex of rats. Ann. Neurosci. 25, 223-233. https://doi.org/10.1159/000490908
- Sitte, N., Merker, K., Grune, T., and Von Zglinicki, T. (2001). Lipofuscin accumulation in proliferating fibroblasts in vitro: an indicator of oxidative stress. Exp. Gerontol. 36, 475-486. https://doi.org/10.1016/S0531-5565(00)00253-9
- Sohal, R. and Brunk, U. (1989). Lipofuscin as an indicator of oxidative stress and aging. Adv. Exp. Med. Biol. 266, 17-26.
- Song, S.B. and Hwang, E.S. (2020). High levels of ROS impair lysosomal acidity and autophagy flux in glucose-deprived fibroblasts by activating ATM and erk pathways. Biomolecules 10, 761.
- Song, Y.S., Lee, B.Y., and Hwang, E.S. (2005). Dinstinct ROS and biochemical profiles in cells undergoing DNA damage-induced senescence and apoptosis. Mech. Ageing Dev. 126, 580-590. https://doi.org/10.1016/j.mad.2004.11.008
- Terman, A. and Brunk, U.T. (1998). Lipofuscin: mechanisms of formation and increase with age. APMIS 106, 265-276. https://doi.org/10.1111/j.1699-0463.1998.tb01346.x
- Terman, A. and Brunk, U.T. (2004). Lipofuscin. Int. J. Biochem. Cell Biol. 36, 1400-1404. https://doi.org/10.1016/j.biocel.2003.08.009
- Terman, A. and Welander, M. (1999). Centrophenoxine slows down, but does not reverse, lipofuscin accumulation in cultured cells. J. Anti Aging Med. 2, 265-273. https://doi.org/10.1089/rej.1.1999.2.265
- Von Zglinicki, T., Nilsson, E., Docke, W., and Brunk, U. (1995). Lipofuscin accumulation and ageing of fibroblasts. Gerontology 41 Suppl 2, 95-108. https://doi.org/10.1159/000213728
- Wolf, G. (2003). Lipofuscin and macular degeneration. Nutr. Rev. 61, 342-346. https://doi.org/10.1301/nr.2003.oct.342-346
- Xu, C., Wang, L., Fozouni, P., Evjen, G., Chandra, V., Jiang, J., Lu, C., Nicastri, M., Bretz, C., Winkler, J.D., et al. (2020). SIRT1 is downregulated by autophagy in senescence and ageing. Nat. Cell Biol. 22, 1170-1179. https://doi.org/10.1038/s41556-020-00579-5
- Zhao, J., Zhai, B., Gygi, S.P., and Goldberg, A.L. (2015). mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc. Natl. Acad. Sci. U. S. A. 112, 15790-15797. https://doi.org/10.1073/pnas.1521919112