DOI QR코드

DOI QR Code

Lipofuscin Granule Accumulation Requires Autophagy Activation

  • Received : 2023.01.23
  • Accepted : 2023.05.13
  • Published : 2023.08.31

Abstract

Lipofuscins are oxidized lipid and protein complexes that accumulate during cellular senescence and tissue aging, regarded as markers for cellular oxidative damage, tissue aging, and certain aging-associated diseases. Therefore, understanding their cellular biological properties is crucial for effective treatment development. Through traditional microscopy, lipofuscins are readily observed as fluorescent granules thought to accumulate in lysosomes. However, lipofuscin granule formation and accumulation in senescent cells are poorly understood. Thus, this study examined lipofuscin accumulation in human fibroblasts exposed to various stressors. Our results substantiate that in glucose-starved or replicative senescence cells, where elevated oxidative stress levels activate autophagy, lipofuscins predominately appear as granules that co-localize with autolysosomes due to lysosomal acidity or impairment. Meanwhile, autophagosome formation is attenuated in cells experiencing oxidative stress induced by a doxorubicin pulse and chase, and lipofuscin fluorescence granules seldom manifest in the cytoplasm. As Torin-1 treatment activates autophagy, granular lipofuscins intensify and dominate, indicating that autophagy activation triggers their accumulation. Our results suggest that high oxidative stress activates autophagy but fails in lipofuscin removal, leaving an abundance of lipofuscin-filled impaired autolysosomes, referred to as residual bodies. Therefore, future endeavors in treating lipofuscin pathology-associated diseases and dysfunctions through autophagy activation demand meticulous consideration.

Keywords

Acknowledgement

This work was supported by the Basic Study and Interdisciplinary R&D Foundation Fund from the University of Seoul (2021-2022) granted to E.S.H.

References

  1. Allaire, J., Maltais, F., LeBlanc, P., Simard, P.M., Whittom, F., Doyon, J.F., Simard, C., and Jobin, J. (2002). Lipofuscin accumulation in the vastus lateralis muscle in patients with chronic obstructive pulmonary disease. Muscle Nerve 25, 383-389. https://doi.org/10.1002/mus.10039
  2. Blommaart, E.F., Krause, U., Schellens, J.P., Vreeling-Sindelarova, H., and Meijer, A.J. (1997). The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem. 243, 240-246. https://doi.org/10.1111/j.1432-1033.1997.0240a.x
  3. Boulton, M., Davies, S. and Ellis, S. (1999). Lipofuscin turnover. Invest. Ophthalmol. Vis. Sci. 40, 1887-1888.
  4. Brunk, U.T. and Terman, A. (2002). The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur. J. Biochem. 269, 1996-2002. https://doi.org/10.1046/j.1432-1033.2002.02869.x
  5. Brunk, U.T., Jones, C.B., and Sohal, R.S. (1992). A novel hypothesis of lipofuscinogenesis and cellular aging based on interactions between oxidative stress and autophagocytosis. Mutat. Res. 275, 395-403. https://doi.org/10.1016/0921-8734(92)90042-N
  6. Cho, S., Park, J., and Hwang, E.S. (2011). Kinetics of the cell biological changes occurring in the progression of DNA damage-induced senescence. Mol. Cells 31, 539-546. https://doi.org/10.1007/s10059-011-1032-4
  7. Fang, Y., Taubitz, T., Tschulakow, A.V., Heiduschka, P., Szewczyk, G., Burnet, M., Peters, T., Biesemeier, A., Sarna, T., Schraermeyer, U., et al. (2022). Removal of RPE lipofuscin results in rescue from retinal degeneration in a mouse model of advanced Stargardt disease: role of reactive oxygen species. Free Radic. Biol. Med. 182, 132-149. https://doi.org/10.1016/j.freeradbiomed.2022.02.025
  8. Goodwin, E.C., Yang, E., Lee, C.J., Lee, H.W., DiMaio, D., and Hwang, E.S. (2000). Rapid induction of senescence in human cervical carcinoma cells. Proc. Natl. Acad. Sci. U. S. A. 97, 10978-10983. https://doi.org/10.1073/pnas.97.20.10978
  9. Grabowska, W., Sikora, E., and Bielak-Zmijewska, A. (2017). Sirtuins, a promising target in slowing down the ageing process. Biogerontology 18, 447-476. https://doi.org/10.1007/s10522-017-9685-9
  10. Guerrero-Navarro, L., Jansen-Durr, P., and Cavinato, M. (2022). Age-related lysosomal dysfunctions. Cells 11, 1977.
  11. Herranz, D., Munoz-Martin, M., Canamero, M., Mulero, F., Martinez-Pastor, B., Fernandez-Capetillo, O., and Serrano, M. (2010). Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun. 1, 3.
  12. Hohn, A., Konig, J., and Grune, T. (2013). Protein oxidation in aging and the removal of oxidized proteins. J. Proteomics 92, 132-159. https://doi.org/10.1016/j.jprot.2013.01.004
  13. Hohn, A., Sittig, A., Jung, T., Grimm, S., and Grune, T. (2012). Lipofuscin is formed independently of macroautophagy and lysosomal activity in stress-induced prematurely senescent human fibroblasts. Free Radic. Biol. Med. 53, 1760-1769. https://doi.org/10.1016/j.freeradbiomed.2012.08.591
  14. Huang, R. and Liu, W. (2015). Identifying an essential role of nuclear LC3 for autophagy. Autophagy 11, 852-853. https://doi.org/10.1080/15548627.2015.1038016
  15. Huang, R., Xu, Y., Wan, W., Shou, X., Qian, J., You, Z., Liu, B., Chang, C., Zhou, T., Lippincott-Schwartz, J., et al. (2015). Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol. Cell 57, 456-466. https://doi.org/10.1016/j.molcel.2014.12.013
  16. Jolly, R.D., Palmer, D.N., and Dalefield, R.R. (2002). The analytical approach to the nature of lipofuscin (age pigment). Arch. Gerontol. Geriatr. 34, 205-217. https://doi.org/10.1016/S0167-4943(01)00219-9
  17. Julien, S. and Schraermeyer, U. (2012). Lipofuscin can be eliminated from the retinal pigment epithelium of monkeys. Neurobiol. Aging 33, 2390-2397. https://doi.org/10.1016/j.neurobiolaging.2011.12.009
  18. Kang, H.T., Lee, H.I., and Hwang, E.S. (2006). Nicotinamide extends replicative lifespan of human cells. Aging Cell 5, 423-436. https://doi.org/10.1111/j.1474-9726.2006.00234.x
  19. Kang, H.T., Park, J.T., Choi, K., Kim, Y., Choi, H.J.C., Jung, C.W., Lee, Y.S., and Park, S.C. (2017). Chemical screening identifies ATM as a target for alleviating senescence. Nat. Chem. Biol. 13, 616-623. https://doi.org/10.1038/nchembio.2342
  20. Katz, M.L., Rice, L.M., and Gao, C.L. (1999). Reversible accumulation of lipofuscin-like inclusions in the retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 40, 175-181.
  21. Kwak, J.Y., Ham, H.J., Kim, C.M., and Hwang, E.S. (2015). Nicotinamide exerts antioxidative effects on senescent cells. Mol. Cells 38, 229-235. https://doi.org/10.14348/molcells.2015.2253
  22. Li, W.W., Wang, H.J., Tan, Y.Z., Wang, Y.L., Yu, S.N., and Li, Z.H. (2021). Reducing lipofuscin accumulation and cardiomyocytic senescence of aging heart by enhancing autophagy. Exp. Cell Res. 403, 112585.
  23. Moreno-Garcia, A., Kun, A., Calero, O., Medina, M., and Calero, M. (2018). An overview of the role of lipofuscin in age-related neurodegeneration. Front. Neurosci. 12, 464.
  24. Parzych, K.R. and Klionsky, D.J. (2014). An overview of autophagy: morphology, mechanism, and regulation. Antioxid. Redox Signal. 20, 460-473. https://doi.org/10.1089/ars.2013.5371
  25. Porta, E.A. (2002). Pigments in aging: an overview. Ann. N. Y. Acad. Sci. 959, 57-65. https://doi.org/10.1111/j.1749-6632.2002.tb02083.x
  26. Radu, R.A., Hu, J., Yuan, Q., Welch, D.L., Makshanoff, J., Lloyd, M., McMullen, S., Travis, G.H., and Bok, D. (2011). Complement system dysregulation and inflammation in the retinal pigment epithelium of a mouse model for Stargardt macular degeneration. J. Biol. Chem. 286, 18593-18601. https://doi.org/10.1074/jbc.M110.191866
  27. Singh Kushwaha, S., Patro, N., and Kumar Patro, I. (2019). A sequential study of age-related lipofuscin accumulation in hippocampus and striate cortex of rats. Ann. Neurosci. 25, 223-233. https://doi.org/10.1159/000490908
  28. Sitte, N., Merker, K., Grune, T., and Von Zglinicki, T. (2001). Lipofuscin accumulation in proliferating fibroblasts in vitro: an indicator of oxidative stress. Exp. Gerontol. 36, 475-486. https://doi.org/10.1016/S0531-5565(00)00253-9
  29. Sohal, R. and Brunk, U. (1989). Lipofuscin as an indicator of oxidative stress and aging. Adv. Exp. Med. Biol. 266, 17-26.
  30. Song, S.B. and Hwang, E.S. (2020). High levels of ROS impair lysosomal acidity and autophagy flux in glucose-deprived fibroblasts by activating ATM and erk pathways. Biomolecules 10, 761.
  31. Song, Y.S., Lee, B.Y., and Hwang, E.S. (2005). Dinstinct ROS and biochemical profiles in cells undergoing DNA damage-induced senescence and apoptosis. Mech. Ageing Dev. 126, 580-590. https://doi.org/10.1016/j.mad.2004.11.008
  32. Terman, A. and Brunk, U.T. (1998). Lipofuscin: mechanisms of formation and increase with age. APMIS 106, 265-276. https://doi.org/10.1111/j.1699-0463.1998.tb01346.x
  33. Terman, A. and Brunk, U.T. (2004). Lipofuscin. Int. J. Biochem. Cell Biol. 36, 1400-1404. https://doi.org/10.1016/j.biocel.2003.08.009
  34. Terman, A. and Welander, M. (1999). Centrophenoxine slows down, but does not reverse, lipofuscin accumulation in cultured cells. J. Anti Aging Med. 2, 265-273. https://doi.org/10.1089/rej.1.1999.2.265
  35. Von Zglinicki, T., Nilsson, E., Docke, W., and Brunk, U. (1995). Lipofuscin accumulation and ageing of fibroblasts. Gerontology 41 Suppl 2, 95-108. https://doi.org/10.1159/000213728
  36. Wolf, G. (2003). Lipofuscin and macular degeneration. Nutr. Rev. 61, 342-346. https://doi.org/10.1301/nr.2003.oct.342-346
  37. Xu, C., Wang, L., Fozouni, P., Evjen, G., Chandra, V., Jiang, J., Lu, C., Nicastri, M., Bretz, C., Winkler, J.D., et al. (2020). SIRT1 is downregulated by autophagy in senescence and ageing. Nat. Cell Biol. 22, 1170-1179. https://doi.org/10.1038/s41556-020-00579-5
  38. Zhao, J., Zhai, B., Gygi, S.P., and Goldberg, A.L. (2015). mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc. Natl. Acad. Sci. U. S. A. 112, 15790-15797. https://doi.org/10.1073/pnas.1521919112