참고문헌
- Abbas, I.A. (2011), "A two-dimensional problem for a fibre-reinforced anisotropic thermoelastic half-space with energy dissipation", Sadhana, 36(3), 411-423. http://doi.org/10.1007/s12046-011-0025-5.
- Abbas, I.A. (2014), "Analytical solution for a free vibration analysis of thermoelastic hollow sphere", Mech. Bas. Des. Struct. Mach., 43(3), 265-276. https://doi.org/10.1080/15397734.2014.956244.
- Abbas, I.A. (2014), "Fractional order GN model on thermoelastic interaction in an infinite fibre-reinforced anisotropic plate containing a circular hole", J. Comput. Theor. Nanosci., 11(2), 380-384. https://doi.org/10.1166/jctn.2014.3363.
- Abbas, I.A. (2015), "Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity", Appl. Math. Model., 39(20), 6196-6206. https://doi.org/10.1016/j.apm.2015.01.065.
- Abbas, I.A. and Marin, M. (2017), "Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating", Physica E: Low Dimens. Syst. Nanostruct., 87, 254-260. http://doi.org/10.2016/j.physe.2016.10.048.
- Abd-Alla, A.M., Abo-Dahab, S.M. and Khan, A. (2017), "Rotational effect on thermoelastic Stoneley, Love and Rayleigh waves in fibre-reinforced anisotropic general viscoelastic media of higher order", Struct. Eng. Mech., 61(2), 221-230. http://doi.org/10.12989/sem.2017.61.2.221.
- Abd-Alla, A.M., Abo-Dahab, S.M. and Thamali-AL, T.A. (2012), "Propagation of Rayleigh waves in a rotating orthotropic material elastic half-space under initial stress and gravity", J. Mech. Sci. Technol., 26(9), 2815-2823. http://doi.org/10.1007/s12206-012-07336-5.
- Abouelregal, A.E., Elhagary, M.A., Soleiman, A. and Khalil, K.M. (2020), "Generalized thermoelastic-diffusion model with higher-order fractional time derivatives and four-phase-lags", Mech. Bas. Des. Struct. Mach., 50(3), 897-914. http://doi.org/10.1080/15397734.2020.1730189.
- Ahmed, S.M. and Abo-Dahab, S.M. (2012), "Influence of initial stress and gravity field on propagation of Rayleigh and Stoneley waves in a thermoelastic Orthotropic granular medium", Math. Prob. Eng., 2012, Article ID 245965. https://doi.org/10.1155/2012/245965.
- Biswas, S. (2021), "Rayleigh waves in porous orthotropic medium with phase-lags", Struct. Eng. Mech., 80(3), 265-274. https://doi.org/10.12989/sem.2021.80.3.265.
- Biswas, S. and Abo-Dahab, S.M. (2018), "Effect of phase lags on Rayleigh wave propagation in initially stressed magneto-thermoelastic orthotropic medium", Appl. Math. Model., 59, 713-727. https://doi.org/10.1016/j.apm.2018.02.025.
- Biswas, S. and Mukhopadhyay, B. (2018), "Eigen function expansion method to characterize Rayleigh wave propagation in orthotropic medium with phase lags", Wave. Random Complex Media., 29(4), 722-742. http://doi.org/10.1080/17455030.2018.1470355.
- Bouafia, K., Selim, M.M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A., ... & Tounsi, A. (2021), "Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model", Steel Compos. Struct., 41(4), 487-503. https://doi.org/10.12989/scs.2021.41.4.487.
- Chadwick, P. and Windle, D.W. (1964), "Propagation of Rayleigh waves along isothermal and insulated boundaries", Proc. Roy. Soc. London, 280, 47-71. https://doi.org/10.1098/rspa.1964.0130.
- Das, P. and Kanoria, M. (2014), "Study of finite thermal waves in a magnetothermoelastic rotating medium", J. Therm. Stress., 37(4), 405-428. http://doi.org/10.1080/01495739.2013.870847.
- Deswal, S. and Kalkal, K.K. (2014), "Plane waves in a fractional order micropolar magneto-thermoelastic half-space", Wave Motion, 51(1), 100-113. http://doi.org/10.1016/j.wavemoti.2013.06.009.
- Draiche, K., Selim, M.M., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2021), "A computational investigation on flexural response of laminated composite plates using a simple quasi3D HSDT", Steel Compos. Struct., 41(5), 697-711. http://doi.org/10.12989/scs.2021.41.5.697.
- Ezzat, M.A. (2020), "Fractional thermo-viscoelastic response of biological tissue with variable thermal material properties", J. Therm. Stress., 43(9), 1120-1137. http://doi.org/10.1080/01495739.2020.1770643
- Hebali, H., Chikh, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., ... & Tounsi, A. (2022), "Effect of the variable visco-Pasternak foundations on the bending and dynamic behaviors of FG plates using integral HSDT model", Geomech. Eng., 28(1), 49-64. https://doi.org/10.12989/gae.2022.28.1.049.
- Hobiny, A. and Abbas, I.A. (2018), "Analytical solutions of photo-thermo-elastic waves in a non-homogenous semiconducting material", Result. Phys., 10, 385-390. http://doi.org/10.1016/j.rinp.2018.06.035.
- Hobiny, A. and Abbas, I.A. (2018), "Theoretical analysis of thermal damages in skin tissue induced by intense moving heat source", Int. Gen. Mass Heat Transf., 124, 1011-1014. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.018.
- Horrigue, S. and Abbas, I.A. (2020), "Fractional order thermoelastic wave assessment in a two-dimensional fiber-reinforced anisotropic material", Math., 8(9), 1609. http://doi.org/10.3390/math8091609.
- Kouider, D., Kaci, A., Selim, M.M., Bousahla, A.A., Bourada, F., Tounsi, A., ... & Hussain, M. (2021), "An original four-variable quasi-3D shear deformation theory for the static and free vibration analysis of new type of sandwich plates with both FG face sheets and FGM hard core", Steel Compos. Struct., 41(2), 167-191. http://doi.org/10.12989/scs.2021.41.2.167.
- Kumar, R. and Chawla, V. (2014), "General solution and fundamental solution for two-dimensional problem in orthotropic thermoelastic media with voids", Theor. Appl. Mech., 41(4), 247-265. http://doi.org/10.2298/TAM1404247.
- Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions due to hall current in transversely isotropic thermoelastic with and without energy dissipation with two temperatures and rotation", J. Solid Mech., 8(4), 840-858.
- Kumar, R., Sharma, N., Lata, P. and Abo-Dahab, S.M. (2017), "Rayleigh waves in anisotropic magnetothermoelastic medium", Couple. Syst. Mech., 6(3), 317-333. http://doi.org/10.12989/csm.2017.6.3.317.
- Lata, P. and Himanshi. (2021a), "Orthotropic magneto-thermoelastic solid with higher order dual-phase-lag model in frequency domain", Struct. Eng. Mech., 77(3), 315-327. http://doi.org/10.12989/sem.2021.77.3.315.
- Lata, P. and Himanshi. (2021b), "Stoneley wave propagation in an orthotropic thermoelastic media with fractional order theory", Compos. Mater. Eng., 3(1), 57-70. http://doi.org/10.12989/cme.2021.3.1.057.
- Lata, P. and Kaur, H. (2021), "Interactions in a homogeneous isotropic modified couple stress thermoelastic solid with multi-dual-phase-lag heat transfer", Steel Compos. Struct., 38(2), 213-221150. http://doi.org/10.12989/scs.2021.38.2.213.
- Lata, P. and Singh, S. (2021), "Stoneley wave propagation in non-local isotropic magneto-thermoelastic solid with multi-dual-phase-lag heat transfer", Steel Compos. Struct., 38(2), 141-150. http://doi.org/10.12989/scs.2021.38.2.141.
- Mahmoud, S.R. (2014), "Effect of non-homogeneity, magnetic field and gravity field on rayleigh waves in an initially stressed elastic half-space of orthotropic material subject to rotation", J. Comput. Theor. Nanosci., 11(7), 1627-1634. http://doi.org/10.1166/jctn.2014.3542.
- Marin, M. (1999), "An evolutionary equation in thermoelasticity of dipolar bodies", J. Math. Phys., 40(3), 1391-1399. http://doi.org/10.1063/1.532809.
- Marin, M., Othman, M.I.A. and Abbas, I.A. (2015), "An extension of the domain of influence theorem for generalized thermoelasticity of anisotropic material with voids", J. Comput. Theor. Nanosci., 12, 1594-1598. https://doi.org/10.1166/jctn.2015.3934.
- Marin, M., Vlase, S. and Paun, M. (2015), "Considerations on double porosity structure for micropolar bodies", AIP Adv., 5(3), 037113. http://doi.org/10.1063/1.4914912.
- Mudhaffar, M.I., Tounsi, A., Chikh, A., AL-Osta, M.A., Alzahrani, M.M. and Al-Dulaijan, S.U. (2021), "Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation", Struct., 33, 2177-2189. https://doi.org/10.1016/j.istruc.2021.05.090.
- Oldham, K.B. and Spainer, J. (1974), The Fractional Calculus, Academic Press, New York, London.
- Othman, M.I., Said, S. and Marin, M. (2019), "A novel model of plane waves of two-temperature fiberreinforced thermoelastic medium under the effect of gravity with three-phase-lag model", Int. J. Numer. Meth. Heat Fluid Flow,29(12), 4788-4806. http://doi.org/10.1108/HFF-04-2019-0359.
- Rachid, A., Ouinas, D., Lousdad, A., Zaoui Zohra, F., Achour, B., Gasmi, H., Butt, T.A. and Tounsi, A. (2021), "Mechanical behaviour and free vibration analysis of FG doubly curved shells on elastic foundation via a new modified displacements field model of 2D and quasi-3D HSDTs", Thin Wall. Struct., 172, 108783. http://doi.org/10.1016/j.tws.2021.108783.
- Rayleigh, L. (1885), "On waves propagated along the plane surface of an elastic solid", Proc. London Math. Soc., s1-17(1), 4-11. http://doi.org/10.1112/plms/s1-17.1.4.
- Shahsavari, D., Karami, B. and Li, L. (2018), "A higher-order gradient model for wave propagation analysis of porous FG nanoplates", Steel Compos. Struct., 29(1), 53-66. http://doi.org/10.12989/scs.2018.29.1.053.
- Shaw, S. and Othman, M.I.A. (2019), "Characteristics of Rayleigh wave propagation in orthotropic magnetothermoelastic half-space: An Eigen function expansion method", Appl. Math. Model., 67(47), 605-620. http://doi.org/10.1016/j.apm.2018.11.019.
- Singh, B. and Verma, S. (2019), "On propagation of Rayleigh type surface wave in five different theories of thermoelasticity", Int. J. Appl. Mech. Eng., 24(3), 661-673. http://doi.org/10.2478/ijame-2019-0041.
- Tahir, S.I., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2022), "The effect of three-variable viscoelastic foundation on the wave propagation in functionally graded sandwich plates via a simple quasi-3D HSDT", Steel Compos. Struct., 42(4), 501-511. https://doi.org/10.12989/scs.2022.42.4.501.
- Vinh, P.V. and Tounsi, A. (2022), "Free vibration analysis of functionally graded doubly curved nanoshells using nonlocal first-order shear deformation theory with variable nonlocal parameters", Thin Wall. Struct., 174, 109084. https://doi.org/10.1016/j.tws.2022.109084.
- Xiong, Q. and Tian, X. (2017), "Transient thermo-piezo-elastic responses of a functionally graded piezoelectric plate under thermal shock", Steel Compos. Struct., 25(2), 187-196. http://doi.org/10.12989/scs.2017.25.2.053.
- Zaitoun, M.W., Chikh, A., Tounsi, A., Al-Osta, M.A., Sharif, A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2022), "Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic-metal plate in a hygrothermal environment", Thin Wall. Struct., 170, 108549. https://doi.org/10.1016/j.tws.2021.108549.
- Zakaria, M. (2014), "Effect of hall current on generalized Magneto-thermoelasticity Micropolar solid subject to ramp type heating", Appl. Mech., 50(1), 92-104. https://doi.org/10.1007/s10778-014-0615-0.