DOI QR코드

DOI QR Code

An exact solution of dynamic response of DNS with a medium viscoelastic layer by moving load

  • S.A.H. Hosseini (Buein Zahra Technical University) ;
  • O. Rahmani (Smart Structures and New Advanced Materials Laboratory, Department of Mechanical Engineering, University of Zanjan) ;
  • H. Hayati (Faculty of Engineering and Information Technology, University of Technology Sydney) ;
  • M. Keshtkar (Buein Zahra Technical University)
  • Received : 2020.04.01
  • Accepted : 2023.03.27
  • Published : 2023.09.25

Abstract

This paper aims to analyze the dynamic response of a double nanobeam system with a medium viscoelastic layer under a moving load. The governing equations are based on the Eringen nonlocal theory. A thin viscoelastic layer has coupled two nanobeams together. An exact solution is derived for each nanobeam, and the dynamic deflection is achieved. The effect of parameters such as nonlocal parameter, velocity of moving load, spring coefficient and the viscoelastic layer damping ratio was studied. The results showed that the effect of the nonlocal parameter is significantly important and the classical theories are not suitable for nano and microstructures.

Keywords

References

  1. Al-Huniti, N.S. and Alahmad, S.T. (2017), "Transient thermo-mechanical response of a functionally graded beam under the effect of a moving heat source", Adv. Mater. Res., 6(1), 27. https://doi.org/10.12989/amr.2017.6.1.027.
  2. Bastanfar, M., Hosseini, S.A., Sourki, R. and Khosravi, F. (2019), "Flexoelectric and surface effects on a cracked piezoelectric nanobeam: Analytical resonant frequency response", Arch. Mech. Eng., 66(4), 417-437. https://doi.org/10.24425/ame.2019.131355.
  3. Bensaid, I., Cheikh, A., Mangouchi, A. and Kerboua, B. (2017), "Static deflection and dynamic behavior of higher-order hyperbolic shear deformable compositionally graded beams", Adv. Mater. Res., 6(1), 13. https://doi.org/10.12989/amr.2017.6.1.013.
  4. Dai, H., Hafner, J.H., Rinzler, A.G., Colbert, D.T. and Smalley, R.E. (1996), "Nanotubes as nanoprobes in scanning probe microscopy", Nature, 384(6605), 147-150. https://doi.org/10.1038/384147a0.
  5. Ebrahimi, F. and Barati, M.R. (2017), "Thermal-induced nonlocal vibration characteristics of heterogeneous beams", Adv. Mater. Res., 6(2), 93. https://doi.org/10.12989/amr.2017.6.2.093.
  6. Ebrahimi, F., Mahmoodi, F. and Barati, M.R. (2017), "Thermo-mechanical vibration analysis of functionally graded micro/nanoscale beams with porosities based on modified couple stress theory", Adv. Mater. Res., 6(3), 279. https://doi.org/10.12989/amr.2017.6.3.279.
  7. Eichenfield, M., Chan, J., Camacho, R.M., Vahala, K.J. and Painter, O. (2009), "Optomechanical crystals", Nature, 462(7269), 78-82. https://doi.org/10.1038/nature08524.
  8. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  9. Fernandez-Saez, J. and Zaera, R. (2017), "Vibrations of Bernoulli-Euler beams using the two-phase nonlocal elasticity theory", Int. J. Eng. Sci., 119, 232-248. https://doi.org/10.1016/j.ijengsci.2017.06.021.
  10. Frank, I.W., Deotare, P.B., McCutcheon, M.W. and Loncar, M. (2010), "Programmable photonic crystal nanobeam cavities", Opt. Expr., 18(8), 8705-8712. https://doi.org/10.1364/OE.18.008705.
  11. Hamidi, B.A., Hosseini, S.A., Hassannejad, R. and Khosravi, F. (2019), "An exact solution on gold microbeam with thermoelastic damping via generalized Green-Naghdi and modified couple stress theories", J. Therm. Stress., 43(2), 157-174. https://doi.org/10.1080/01495739.2019.1666694.
  12. Hamidi, B.A., Hosseini, S.A., Hassannejad, R. and Khosravi, F. (2020), "Theoretical analysis of thermoelastic damping of silver nanobeam resonators based on Green-Naghdi via nonlocal elasticity with surface energy effects", Eur. Phys. J. Plus, 135(1), 35. https://doi.org/10.1140/epjp/s13360-019-00037-8.
  13. Hayati, H., Hosseini, S.A. and Rahmani, O. (2016), "Coupled twist-bending static and dynamic behavior of a curved single-walled carbon nanotube based on nonlocal theory", Microsyst. Technol., 23, 2393-2401. https://doi.org/10.1007/s00542-016-2933-0.
  14. Hosseini, S. and Rahmani, O. (2016), "Surface effects on buckling of double nanobeam system based on nonlocal Timoshenko model", Int. J. Struct. Stab. Dyn., 16(10), 1550077. https://doi.org/10.1142/S0219455415500777.
  15. Hosseini, S.A. and Khosravi, F. (2020), "Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings", Adv. Nano Res., 8(1), 25. https://doi.org/10.12989/anr.2020.8.1.025.
  16. Hosseini, S.A., Khosravi, F. and Ghadiri, M. (2019), "Moving axial load on dynamic response of singlewalled carbon nanotubes using classical, Rayleigh and Bishop rod models based on Eringen's theory", J. Vib. Control, 26(11-12), 913-928. https://doi.org/10.1177/1077546319890170.
  17. Hosseini, S.A., Khosravi, F. and Ghadiri, M. (2020), "Effect of external moving torque on dynamic stability of carbon nanotube", J. Nano Res., 61, 118-135. https://doi.org/10.4028/www.scientific.net/JNanoR.61.118.
  18. Hosseini, S.A.H. and Rahmani, O. (2016), "Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model", Appl. Phys. A, 122(3), 1-11. https://doi.org/10.1007/s00339-016-9696-4.
  19. Khaniki, H.B. (2018), "Vibration analysis of rotating nanobeam systems using Eringen's two-phase local/nonlocal model", Physica E: Low Dimens. Syst. Nanostr., 99, 310-319. https://doi.org/10.1016/j.physe.2018.02.008.
  20. Khosravi, F., Hosseini, S.A. and Hamidi, B.A. (2020), "On torsional vibrations of triangular nanowire", Thin Wall. Struct., 148, 106591. https://doi.org/10.1016/j.tws.2019.106591.
  21. Khosravi, F., Hosseini, S.A. and Norouzi, H. (2020), "Exponential and harmonic forced torsional vibration of single-walled carbon nanotube in an elastic medium", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 234(10), 1928-1942. https://doi.org/10.1177/0954406220903341.
  22. Khosravi, F., Hosseini, S.A. and Tounsi, A. (2020), "Torsional dynamic response of viscoelastic SWCNT subjected to linear and harmonic torques with general boundary conditions via Eringen's nonlocal differential model", Eur. Phys. J. Plus, 135(2), 183. https://doi.org/10.1140/epjp/s13360-020-00207-z.
  23. Kim, P. and Lieber, C.M. (1999), "Nanotube nanotweezers", Sci., 286(5447), 2148-2150. https://doi.org/10.1126/science.286.5447.2148.
  24. Kunbar, L.A.H., Alkadhimi, B.M., Radhi, H.S. and Faleh, N.M. (2020), "Flexoelectric effects on dynamic response characteristics of nonlocal piezoelectric material beam", Adv. Mater. Res., 8(4), 259. https://doi.org/10.12989/amr.2019.8.4.259.
  25. Liew, K.M., He, X.Q. and Kitipornchai, S. (2006), "Predicting nanovibration of multi-layered graphene sheets embedded in an elastic matrix", Acta Materialia, 54(16), 4229-4236. https://doi.org/10.1016/j.actamat.2006.05.016.
  26. Murmu, T. and Adhikari, S. (2010), "Nonlocal transverse vibration of double-nanobeam-systems", J. Appl. Phys., 108(8), 083514. https://doi.org/10.1063/1.3496627.
  27. Murmu, T. and Adhikari, S. (2011), "Nonlocal vibration of bonded double-nanoplate-systems", Compos. Part B: Eng., 42(7), 1901-1911. https://doi.org/10.1016/j.compositesb.2011.06.009.
  28. Murmu, T. and Adhikari, S. (2012), "Nonlocal elasticity based vibration of initially pre-stressed coupled nanobeam systems", Eur. J. Mech.-A/Solid., 34, 52-62. https://doi.org/10.1016/j.euromechsol.2011.11.010.
  29. Pirmohammadi, A.A., Pourseifi, M., Rahmani, O. and Hoseini, S.A.H. (2014), "Modeling and active vibration suppression of a single-walled carbon nanotube subjected to a moving harmonic load based on a nonlocal elasticity theory", Appl. Phys. A, 117(3), 1547-1555. https://doi.org/10.1007/s00339-014-8592-z.
  30. Pouresmaeeli, S., Fazelzadeh, S.A. and Ghavanloo, E. (2012), "Exact solution for nonlocal vibration of double-orthotropic nanoplates embedded in elastic medium", Compos. Part B: Eng., 43(8), 3384-3390. https://doi.org/10.1016/j.compositesb.2012.01.046.
  31. Pourseifi, M., Rahmani, O. and Hoseini, S.A.H. (2015), "Active vibration control of nanotube structures under a moving nanoparticle based on the nonlocal continuum theories", Meccanica, 50(5), 1351-1369. https://doi.org/10.1007/s11012-014-0096-6.
  32. Radic, N., Jeremic, D., Trifkovic, S. and Milutinovic, M. (2014), "Buckling analysis of double-orthotropic nanoplates embedded in Pasternak elastic medium using nonlocal elasticity theory", Compos. Part B: Eng., 61, 162-171. https://doi.org/10.1016/j.compositesb.2014.01.042.
  33. Rahmani, O., Asemani, S.S. and Hosseini, S.A.H. (2015), "Study the buckling of functionally graded nanobeams in elastic medium with surface effects based on a nonlocal theory", J. Comput. Theor. Nanosci., 12(10), 3162-3170. https://doi.org/10.1166/jctn.2015.4095.
  34. Rahmani, O., Hosseini, S.A.H. and Hayati, H. (2016), "Frequency analysis of curved nano-sandwich structure based on a nonlocal model", Modern Phys. Lett. B, 30(10), 1650136. https://doi.org/10.1142/S0217984916501360.
  35. Rahmani, O., Hosseini, S.A.H., Noroozi Moghaddam, M.H. and Fakhari Golpayegani, I. (2015), "Torsional vibration of cracked nanobeam based on nonlocal stress theory with various boundary conditions: An analytical study", Int. J. Appl. Mech., 07(03), 1550036. https://doi.org/10.1142/S1758825115500362.
  36. Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003.
  37. Romano, G., Barretta, R., Diaco, M. and Marotti de Sciarra, F. (2017), "Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams", Int. J. Mech. Sci., 121, 151-156. https://doi.org/10.1016/j.ijmecsci.2016.10.036.
  38. Wang, Y.B., Zhu, X.W. and Dai, H.H. (2016), "Exact solutions for the static bending of Euler-Bernoulli beams using Eringen's two-phase local/nonlocal model", AIP Adv., 6(8), 085114. https://doi.org/10.1063/1.4961695.
  39. Zhang, P. and Qing, H. (2021), "Closed-form solution in bi-Helmholtz kernel based two-phase nonlocal integral models for functionally graded Timoshenko beams", Compos. Struct., 265, 113770. https://doi.org/10.1016/j.compstruct.2021.113770.
  40. Zhang, P. and Qing, H. (2022), "Free vibration analysis of Euler-Bernoulli curved beams using two-phase nonlocal integral models", J. Vib. Control, 28(19-20), 2861-2878. https://doi.org/10.1177/10775463211022483.
  41. Zhang, P. and Qing, H. (2022), "Well-posed two-phase nonlocal integral models for free vibration of nanobeams in context with higher-order refined shear deformation theory", J. Vib. Control, 28(23-24), 3808-3822. https://doi.org/10.1177/10775463211039902.
  42. Zhang, P., Schiavone, P. and Qing, H. (2022), "Local/nonlocal mixture integral models with bi-Helmholtz kernel for free vibration of Euler-Bernoulli beams under thermal effect", J. Sound Vib., 525, 116798. https://doi.org/10.1016/j.jsv.2022.116798.