DOI QR코드

DOI QR Code

Free vibration of functionally graded carbon nanotubes reinforced composite nanobeams

  • Miloud Ladmek (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Abdelkader Belkacem (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Ahmed Amine Daikh (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Aicha Bessaim (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Aman Garg (Department of Civil Engineering, National Institute of Technology) ;
  • Mohammed Sid Ahmed Houari (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Mohamed-Ouejdi Belarbi (Laboratoire de Recherche en Génie Civil, LRGC, Universite de Biskra) ;
  • Abdelhak Ouldyerou (Department of Engineering Management, College of Engineering, Prince Sultan University)
  • Received : 2022.12.29
  • Accepted : 2023.03.03
  • Published : 2023.06.25

Abstract

This paper proposes an analytical method to investigate the free vibration behaviour of new functionally graded (FG) carbon nanotubes reinforced composite beams based on a higher-order shear deformation theory. Cosine functions represent the material gradation and material properties via the thickness. The kinematic relations of the beam are proposed according to trigonometric functions. The equilibrium equations are obtained using the virtual work principle and solved using Navier's method. A comparative evaluation of results against predictions from literature demonstrates the accuracy of the proposed analytical model. Moreover, a detailed parametric analysis checks for the sensitivity of the vibration response of FG nanobeams to nonlocal length scale, strain gradient microstructure-scale, material distribution and geometry.

Keywords

References

  1. Abdelrahman, A.A., Esen, I., Daikh, A.A. and Eltaher, M.A. (2021), "Dynamic analysis of FG nanobeam reinforced by carbon nanotubes and resting on elastic foundation under moving load", Mech. Bas. Des. Struct. Mach., 1-24. https://doi.org/10.1080/15397734.2021.1999263.
  2. Alazwari, M.A., Esen, I., Abdelrahman, A.A., Abdraboh, A.M. and Eltaher, M.A. (2022), "Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermo-magnetic fields and moving load", Adv. Nano Res., 12(3), 231-251. https://doi.org/10.12989/anr.2022.12.3.231.
  3. Babaei, H., Kiani, Y. and Eslami, M.R. (2021a), "Vibrational behavior of thermally pre-/post-buckled FG-CNTRC beams on a nonlinear elastic foundation: a two-step perturbation technique", Acta Mechanica, 232(10), 3897-3915. https://doi.org/10.1007/s00707-021-03027-z.
  4. Babaei, H., Kiani, Y. and Eslami, M.R. (2021b), "perturbation method for thermal post-buckling analysis of shear deformable FG-CNTRC beams with different boundary conditions", Int. J. Struct. Stab. Dyn., 21(13), 2150175. https://doi.org/10.1142/S0219455421501753.
  5. Bachiri, A., Daikh, A.A. and Tounsi, A. (2022), "On the thermo-elastic response of FG-CNTRC cross-ply laminated plates under temperature loading using a new HSDT", J. Appl. Comput. Mech., 8(4), 1370-1386. https://doi.org/10.22055/jacm.2022.40148.3529.
  6. Bessaim, A., Houari, M.S.A., Bernard, F. and Tounsi, A. (2015), "A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates", Struct. Eng. Mech., 56(2), 223-240. https://doi.org/10.12989/sem.2015.56.2.223.
  7. Daikh, A.A., Drai, A., Houari, M.S.A. and Eltaher, M.A. (2020), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. http://dx.doi.org/10.12989/scs.2020.36.6.643.
  8. Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Mohamed, S.A. and Eltaher, M.A. (2022), "Static and dynamic stability responses of multilayer functionally graded carbon nanotubes reinforced composite nanoplates via quasi 3D nonlocal strain gradient theory", Def. Technol., 18(10), 1778-1809. https://doi.org/10.1016/j.dt.2021.09.011.
  9. El-Ashmawy, A.M. and Xu, Y. (2021), "Combined effect of carbon nanotubes distribution and orientation on functionally graded nanocomposite beams using finite element analysis", Mater. Res. Expr., 8(1), 015012. https://doi.org/10.1088/2053-1591/abc773.
  10. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  11. Esen, I. (2020), "Dynamics of size-dependant Timoshenko micro beams subjected to moving loads", Int. J. Mech. Sci., 175, 105501. https://doi.org/10.1016/j.ijmecsci.2020.105501.
  12. Esen, I. and Ozmen, R. (2022a), "Free and forced thermomechanical vibration and buckling responses of functionally graded magneto-electro-elastic porous nanoplates", Mech. Bas. Des. Struct. Mach., 1-38. https://doi.org/10.11-38.080/15397734.2022.2152045. https://doi.org/10.11-38.080/15397734.2022.2152045
  13. Esen, I. and Ozmen, R. (2022b), "Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity", Compos. Struct., 296, 115878. https://doi.org/10.1016/j.compstruct.2022.115878.
  14. Esen, I., Alazwari, M.A., Eltaher, MA. and Abdelrahman, A.A. (2022), "Dynamic response of FG porous nanobeams subjected to thermal and magnetic fields under moving load", Steel Compos. Struct., 42(6), 805-826. https://doi.org/10.12989/scs.2022.42.6.805.
  15. Esen, I., Eltaher, M.A. and Abdelrahman, A. (2021), "Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass", Mech. Bas. Des. Struct. Mach., 51(5), 2607-2631. https://doi.org/10.1080/15397734.2021.1904255.
  16. Garg, A., Chalak, H.D., Belarbi, M.O., Zenkour, A.M. and Sahoo, R. (2021), "Estimation of carbon nanotubes and their applications as reinforcing composite materials-an engineering review", Compos. Struct., 272, 114234. https://doi.org/10.1016/j.compstruct.2021.114234.
  17. Garg, A., Chalak, H.D., Zenkour, A.M., Belarbi, M.O. and Sahoo, R. (2022), "Bending and free vibration analysis of symmetric and unsymmetric functionally graded CNT reinforced sandwich beams containing softcore", Thin Wall. Struct., 170, 108626. https://doi.org/10.1016/j.tws.2021.108626.
  18. Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
  19. Jam, J.E. and Kiani, Y. (2015), "Low velocity impact response of functionally graded carbon nanotube reinforced composite beams in thermal environment", Compos. Struct., 132, 35-43. https://doi.org/10.1016/j.compstruct.2015.04.045.
  20. Jedari Salami, S. (2018), "Free vibration analysis of sandwich beams with carbon nanotube reinforced face sheets based on extended high-order sandwich panel theory", J. Sandw. Struct. Mater., 20(2), 219-248. https://doi.org/10.1177/1099636216649788.
  21. Keleshteri, M.M., Asadi, H. and Aghdam, M.M. (2019), "Nonlinear bending analysis of FG-CNTRC annular plates with variable thickness on elastic foundation", Thin Wall. Struct., 135, 453-462. https://doi.org/10.1016/j.tws.2018.11.020.
  22. Keshtegar, B., Kolahchi, R., Eyvazian, A. and Trung, N.T. (2020), "Dynamic stability analysis in hybrid nanocomposite polymer beams reinforced by carbon fibers and carbon nanotubes", Polym., 13(1), 106. https://doi.org/10.1080/15376494.2011.581412.
  23. Khelifa, Z., Hadji, L., Daouadji, T.H. and Bourada, M. (2018), "Buckling response with stretching effect of carbon nanotube-reinforced composite beams resting on elastic foundation", Struct. Eng. Mech., 67(2), 125-130. http://doi.org/10.12989/sem.2018.67.2.125.
  24. Khosravi, S., Arvin, H. and Kiani, Y. (2019a), "Interactive thermal and inertial buckling of rotating temperature-dependent FG-CNT reinforced composite beams", Compos.: Part B, 175, 107178. https://doi.org/10.1016/j.compositesb.2019.107178.
  25. Khosravi, S., Arvin, H. and Kiani, Y. (2019b), "Vibration analysis of rotating composite beams reinforced with carbon nanotubes in thermal environment", Int. J. Mech. Sci., 164, 105187. https://doi.org/10.1016/j.ijmecsci.2019.105187.
  26. Kiani, Y. (2016), "Thermal postbuckling of temperature-dependent sandwich beams with carbon nanotubereinforced face sheets", J. Therm. Stress., 39(9), 1098-1110. https://doi.org/10.1080/01495739.2016.1192856.
  27. Kiani, Y. and Mirzaei, M. (2019), "Nonlinear stability of sandwich beams with carbon nanotube reinforced faces on elastic foundation under thermal loading", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 233(5), 1701-1712. https://doi.org/10.1177/0954406218772613.
  28. Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041.
  29. Lim, C.W., Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solid., 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  30. Lin, F. and Xiang, Y. (2014), "Numerical analysis on nonlinear free vibration of carbon nanotube reinforced composite beams", Int. J. Struct. Stab. Dyn., 14(01), 1350056. https://doi.org/10.1142/S0219455413500569.
  31. Lin, F. and Xiang, Y. (2014), "Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories", Appl. Math. Model., 38(15-16), 3741-3754. https://doi.org/10.1016/j.apm.2014.02.008.
  32. Mayandi, K. and Jeyaraj, P. (2015), "Bending, buckling and free vibration characteristics of FG-CNT-reinforced polymer composite beam under non-uniform thermal load", Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 229(1), 13-28. https://doi.org/10.1177/1464420713493720.
  33. Merzouki, T., Houari, M.S.A., Bessaim, A., Haboussi, M., Dimitri, R. and Tornabene, F. (2022), "Bending analysis of functionally graded porous nanocomposite beams based on a non-local strain gradient theory", Math. Mech. Solid., 27(1), 66-92. https://doi.org/10.1177/10812865211011759.
  34. Mirzaei, M. and Kiani, Y, (2016), "Nonlinear free vibration of temperature-dependent sandwich beams with carbon nanotube-reinforced face sheets", Acta Mechanica, 227, 1869-1884. https://doi.org/10.1007/s00707-016-1593-6.
  35. Mirzaei, M. and Kiani, Y. (2015), "Snap-through phenomenon in a thermally postbuckled temperature dependent sandwich beam with FG-CNTRC face sheets", Compos. Struct., 134, 1004-1013. https://doi.org/10.1016/j.compstruct.2015.09.003.
  36. Mohseni, A. and Shakouri, M. (2019), "Vibration and stability analysis of functionally graded CNT-reinforced composite beams with variable thickness on elastic foundation", Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 233(12), 2478-2489. https://doi.org/10.1177/1464420719866222.
  37. Ozmen, R., Kilic, R. and Esen, I. (2022), "Thermomechanical vibration and buckling response of nonlocal strain gradient porous FG nanobeams subjected to magnetic and thermal fields", Mech. Adv. Mater. Struct., 1-20. https://doi.org/10.1080/15376494.2022.2124000.
  38. Salami, S.J. (2016), "Extended high order sandwich panel theory for bending analysis of sandwich beams with carbon nanotube reinforced face sheets", Physica E: Low Dimens. Syst. Nanostr., 76, 187-197. https://doi.org/10.1016/j.physe.2015.10.015.
  39. Talebizadehsardari, P., Eyvazian, A., Asmael, M., Karami, B., Shahsavari, D. and Mahani, R.B. (2020), "Static bending analysis of functionally graded polymer composite curved beams reinforced with carbon nanotubes", Thin Wall. Struct., 157, 107139. https://doi.org/10.1016/j.tws.2020.107139.
  40. Wang, Q., Pang, F., Qin, B. and Liang, Q. (2018), "A unified formulation for free vibration of functionally graded carbon nanotube reinforced composite spherical panels and shells of revolution with general elastic restraints by means of the Rayleigh-Ritz method", Polym. Compos., 39(S2), E924-E944. https://doi.org/10.1016/j.compstruc.2009.07.009.
  41. Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028.
  42. Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Ves. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012.
  43. Zghal, S., Frikha, A. and Dammak, F. (2020), "Large deflection response-based geometrical nonlinearity of nanocomposite structures reinforced with carbon nanotubes", Appl. Math. Mech., 41, 1227-1250. https://doi.org/10.1007/s10483-020-2633-9.
  44. Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010.