DOI QR코드

DOI QR Code

Novel green composite material manufactured by extrusion process from recycled polypropylene matrix reinforced with eucalyptus fibres and granite powder

  • Romulo Maziero (Graduate Program in Mechanical Engineering, Federal University of Minas Gerais) ;
  • Washington M. Cavalcanti (Graduate Program in Mechanical Engineering, Federal University of Minas Gerais) ;
  • Bruno D. Castro (Graduate Program in Mechanical Engineering, Federal University of Minas Gerais) ;
  • Claudia V. Campo, Rubio (Grupo de Inovacao e Tecnologia em Materiais (GiTeM), Mechanical Engineering Department, Federal University of Minas Gerais) ;
  • Luciano M.G. Vieira (Grupo de Inovacao e Tecnologia em Materiais (GiTeM), Mechanical Engineering Department, Federal University of Minas Gerais) ;
  • Tulio H. Panzera (Centre for Innovation and Technology in Composite Materials, Department of Mechanical and Production Engineering, Federal University of Sao Joao del Rei) ;
  • Juan C. Campos Rubio (Graduate Program in Mechanical Engineering, Federal University of Minas Gerais)
  • Received : 2022.02.16
  • Accepted : 2022.12.27
  • Published : 2023.06.25

Abstract

The development of sustainable composites materials, from recycled polymeric materials and waste from the wood industry and stone processing, allows reducing the volume of these by-products, minimizing impacts on health and the environment. Nowadays, Polypropylene (PP) is the most recycled polymer in industry, while the furniture industry has increasingly used timber felled from sustainable forest plantations as a eucalypt. The powder tailing from the ornamental stone extraction and processing industry is commonly disposed of in the environment without previous treatment. Thus, the technological option for the development of composite materials presents itself as a sustainable alternative for processing and manufacturing industries, enabling the development of new materials with special technical features. The results showed that powder granite particles may be incorporated into the polypropylene matrix associated with short eucalyptus fibres forming green hybrid composites with potential application in structural engineering, such as transport and civil construction industries.

Keywords

Acknowledgement

The Post-Graduate Program in Mechanical Engineering (PPGMEC) of the Federal University of Minas Gerais (UFMG) for their physical structure and research support. The Coordination for the Improvement of Higher Education Personnel - Brazil (CAPES, Finance Code 001), CNPq and FAPEMIG for their financial support.

References

  1. Battegazzore, D., Noori, A. and Frache, A. (2019), "Natural wastes as particle filler for poly(lactic acid)-based composites", J. Compos. Mater., 53(6), 783-797. https://doi.org/10.1177/0021998318791316.
  2. Caicedo, C., Vazquez-Arce, A., Ossa, O.H., De La Cruz, H. and Maciel-Cerda, A. (2018), "Physicomechanical behaviour of composites of polypropylene, and mineral fillers with different process cycles", DYNA, 85(207), 260-268. https://doi.org/10.15446/dyna.v85n207.71894.
  3. Castro, B.D., Fotouhi, M., Vieira, L.M.G., Faria, P.E. and Campos Rubio, J.C. (2021), "Mechanical behaviour of a green composite from biopolymers reinforced with sisal fibres", J. Polym. Environ., 29, 429-440. https://doi.org/10.1007/s10924-020-01875-9.
  4. Elmushyakhi, A. (2021), "Parametric characterization of nano-hybrid wood polymer composites using ANOVA and regression analysis", Struct., 29(1), 652-662. https://doi.org/10.1016/j.istruc.2020.11.069.
  5. Gonzalez-Trivino, I., Pascual-Cosp, J., Moreno, B. and Benitez-Guerrero, M. (2019), "Manufacture of ceramics with high mechanical properties from red mud and granite waste", Materiales de Construccion, 69(333), 1-8. https://doi.org/10.3989/mc.2019.03818.
  6. IBA. The Brazilian Tree Industry. Annual Report Iba (2021), Sao Paulo, 176. https://iba.org/eng/datafiles/publicacoes/relatorios/relatorioiba2021.pdf.
  7. Ibrahim, I.D., Jamiru, T., Sadiku, R.E., Kupolati, W.K. and Agwuncha, S.C. (2017), "Dependency of the mechanical properties of sisal fibre reinforced recycled polypropylene composites on fibre surface treatment, fibre content and nanoclay", J. Polym. Environ., 25(2), 427-434. https://doi.org/10.1007/s10924-016-0823-2.
  8. Islam, M.R., Gupta, A., Rivai, M., Beg, M.D.H. and Mina, Md.F. (2016), "Effects of fibre-surface treatment on the properties of hybrid composites prepared from oil palm empty fruit bunch fibres, glass fibres, and recycled polypropylene", J. Appl. Polym. Sci., 133(11), 978-986. https://doi.org/10.1002/app.43049.
  9. Lopez, Y.M., Paes, J.B., Gustave, D., Goncalves, F.G., Mendez, F.C. and Nantet, A.C.T. (2020), "Production of wood-plastic composites using cedrela odorata sawdust waste and recycled thermoplastics mixture from post-consumer products-A sustainable approach for cleaner production in Cuba", J. Clean. Prod., 244(1), 1-10. https://doi.org/10.1016/j.jclepro.2019.118723.
  10. Maziero, R., Soares, K., Filho, A.I., Franco Junior, A.R. and Campos Rubio, J.C. (2019), "Maleated polypropylene as coupling agent for polypropylene composites reinforced with eucalyptus and pinus particles", Bioresour., 14(2), 4774-4791. https://doi.org/10.15376/biores.14.2.4774-4791.
  11. Medina, G., Saez del Bosque, I.F., Frias, M., Sanchez de Rojas, M.I. and Medina, C. (2017), "Granite quarry waste as a future eco-efficient supplementary cementitious material (SCM): Scientific and technical considerations", J. Clean. Prod., 148(1), 467-476. https://doi.org/10.1016/j.jclepro.2017.02.048.
  12. Nourbakhsh, A. and Ashori, A. (2009), "Preparation and properties of wood plastic composites made of recycled high-density polyethylene", J. Compos. Mater., 43(8), 877-883. https://doi.org/10.1177/0021998309103089.
  13. Ragunathan, S., Mustaffa, Z., Kamarudin, H., Sam, S.T. and Ismail, H. (2017), "The effect of polypropylene maleic anhydride on polypropylene/(recycled acrylonitrile butadiene rubber)/(sugarcane bagasse) composite", J. Vinyl Addit. Technol., 23(3), 228-233. https://doi.org/10.1002/vnl.21493.
  14. Ramos, F.J.H.T., Reis, R.H.M., Grafova, I., Grafov, A. and Monteiro, S.N. (2020), "Eco-friendly recycled polypropylene matrix composites incorporated with geopolymer concrete waste particles", J. Mater. Res. Technol., 9(3), 3084-3090. https://doi.org/10.1016/j.jmrt.2020.01.054.
  15. Sari, A., Saleh, T.A., Hekimoglu, G., Tuzen, M. and Tyagi, V.V. (2020), "Evaluation of carbonized waste tire for development of novel shape stabilized composite phase change material for thermal energy storage", Waste Manage., 103(1), 352-360. https://doi.org/10.1016/j.wasman.2019.12.051.
  16. Shamsabadi, E.A., Ghalehnovi, M., Brito, J. and Khodabakhshian, A. (2018), "Performance of concrete withwaste granite powder: The effect of superplasticizers", Appl. Sci., 8(10), 1-20. https://doi.org/10.3390/app8101808.
  17. Silva, L., Panzera, T., Velloso, V., Campos Rubio, J.C., Christoforo, A. and Scarpa, F. (2013), "Statistical design of polymeric composites reinforced with banana fibres and silica microparticles", J. Compos. Mater., 47(10), 1199-1210. https://doi.org/10.1177/0021998312446499.
  18. Srivabut, C., Ratanawilai, T. and Hiziroglu, S. (2018), "Effect of nanoclay, talcum, and calcium carbonate as filler on properties of composites manufactured from recycled polypropylene and rubberwood fibre", Constr. Build. Mater., 162(1), 450-458. https://doi.org/10.1016/j.conbuildmat.2017.12.048.
  19. Vieira, L.M.G., Santos, J.C., Panzera, T.H., Christoforo, A.L., Mano, V., Campos Rubio, J C. and Scarpa, F. (2016), "Hybrid composites based on sisal fibres and silica nanoparticles", Polym. Compos., 39(1), 146-156. https://doi.org/10.1002/pc.23915.
  20. Vini, M.H. and Daneshmand, S. (2019), "Bonding evolution of bimetallic Al/Cu laminates fabricated by asymmetric roll bonding", Adv. Mater. Res., 8(1), 1-10. https://doi.org/10.12989/amr.2019.8.1.001.
  21. Vini, M.H. and Daneshmand, S. (2022), "Mechanical and wear properties evaluation of Al/Al2O3 composites fabricated by combined compo-casting and WARB process", Adv. Comput. Des., 7(2), 129-137. https://doi.org/10.12989/acd.2022.7.2.129.
  22. Yu, M., Huang, R., He, C., Wu, Q. and Zhao, X. (2016), "Hybrid composites from wheat straw, inorganic filler, and recycled polypropylene: Morphology and mechanical and thermal expansion performance", Int. J. Polym. Sci., 2016, Article ID 2520670. https://doi.org/10.1155/2016/2520670.
  23. Zaaba, N.F. and Ismail, H. (2019), "Effects of natural weathering on the degradation of alkaline-treated peanut shell filled recycled polypropylene composites", J. Vinyl Addit. Technol., 25(1), 26-34. https://doi.org/10.1002/vnl.21655.
  24. Zainuddin, N., Yunus, N.Z.M., Al-Bared, M.A.M., Marto, A., Harahap, I.S.H. and Rashid, A.S.A. (2019), "Measuring the engineering properties of marine clay treated with disposed granite waste", Measure., 131(1), 50-60. https://doi.org/10.1016/j.measurement.2018.08.053.
  25. Zdiri, K., Harzallah, O., Elamri, A., Khenoussi, N., Brendle, J. and Mohamed, H. (2018), "Rheological and thermal behaviour of tunisian clay reinforced recycled polypropylene composites", Adv. Polym. Technol., 37(8), 3759-3768. https://doi.org/10.1002/adv.22159.