References
- Abbas, I.A. and Kumar, R. (2014), "Deformation due to thermal source in micropolar generalized thermoelastic half-space by finite element method", J. Comput. Theor. Nanosci., 11, 185-190. https://doi.org/10.1166/jctn.2014.3335.
- Abbas, I.A. and Marin, M. (2018), "Analytical solutions of a two-dimensional generalized thermoelastic diffusions problem due to laser pulse", Iran. J. Sci. Technol., Trans. Mech. Eng., 42(1), 57-71. https://doi.org/10.1007/s40997-017-0077-1.
- Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/gae.2020.21.1.001.
- Anya, A.I. and Khan, A. (2019), "Reflection and propagation of plane waves at free surfaces of a rotating micropolar fiber-reinforced medium with voids", Geomech. Eng., 18(6), 605-614. https://doi.org/10.12989/gae.2019.18.6.605.
- Belfield, A.J., Rogers, T.G. and Spencer, A.J.M. (1983), "Stress in elastic plates reinforced by fibre lying in concentric circles", J. Mech. Phys. Solid., 31, 25-54. https://doi.org/10.1016/0022-5096(83)90018-2.
- Bonani, F. and Ghione, G. (1995), "On the application of the Kirchhoff transformation to the steady-state thermal analysis of semiconductor devices with temperature-dependent and piecewise inhomogeneous thermal conductivity", Solid-State Electron., 38(7), 1409-1412. https://doi.org/10.1016/0038-1101(94)00255-E.
- Bromwich, T.J.I. (1898), "On the influence of gravity on elastic waves, and, in particular, on the vibrations of an elastic globe", Proc. London Math. Soc., 30(1), 98-120. https://doi.org/10.1112/plms/s1-30.1.98.
- Caputo, M. and Mainardi, F. (1971a), "A new dissipation model based on memory mechanism", Pure Appl. Geophys. (Pageoph), 91, 134-147. https://doi.org/10.1007/BF00879562.
- Caputo, M. and Mainardi, F. (1971b), "Linear models of dissipation in anelastic solids", Rivista del Nuov Cimento (Ser. II), 1, 161-198. https://doi.org/10.1007/BF02820620
- Cheng, Y., Li, S. and Liu, J. (2021), "Abnormal deformation and negative pressure of a hard magnetic disc under the action of a magnet", Sensor. Actuator. A: Phys., 332(1), 113065. https://doi.org/10.1016/j.sna.2021.113065.
- Das, N.C. and Lahiri, A. (2009), "Eigenvalue approach to three dimensional coupled thermoelasticity in a rotating transversely isotropic medium", Tamsui Oxford J. Math. Sci., 25, 237-257.
- De, S.N. and Sengupta, P.R. (1974), "Influence of gravity on wave propagation in an elastic layer", J. Acoust. Soc. Am., 55(5), 919. https://doi.org/10.1121/1.1914662.
- El-Karamany, A.S. and Ezzat, M.A. (2016), "Thermo- elastic diffusion with memory-dependent derivative", J. Therm. Stress., 39, 1035-1050. https://doi.org/10.1080/01495739.2016.1192847.
- Fahmy, M.A. (2020), "Boundary element algorithm for nonlinear modeling and simulation of three-temperature anisotropic generalized micropolar piezothermoelasticity with memory-dependent derivative", Int. J. Appl. Mech., 12(03), 2050027. https://doi.org/10.1142/S1758825120500271.
- Fahmy, M.A. (2021a), "A new BEM for fractional nonlinear generalized porothermoelastic wave propagation problems", Comput. Mater. Continua, 680(1), 59-76. https://doi.org/10.32604/cmc.2021.015115.
- Fahmy, M.A. (2021b), "A new boundary element algorithm for modeling and simulation of nonlinear thermal stresses in micropolar FGA composites with temperature- dependent properties", Adv. Model. Simul. Eng. Sci., 8(6), 1-23. https://doi.org/10.1186/s40323-021-00193-6.
- Fahmy, M.A. (2021c), "A new boundary element formulation for modeling and simulation of three-temperature distributions in carbon nanotube fiber reinforced composites with inclusions", Math. Meth. Appl. Sci., https://doi.org/10.1002/mma.7312.
- Fahmy, M.A. (2021d), "A novel BEM for modeling and simulation of 3T nonlinear generalized anisotropic micropolar-thermoelasticity theory with memory dependent derivative", Comput. Model. Eng. Sci., 126(1), 175-199. https://doi.org/10.32604/cmes.2021.012218.
- Fahmy, M.A. (2021e), "A new BEM for modeling and simulation of 3T MDD laser-generated ultrasound stress waves in FGA smart materials", Comput. Meth. Mater. Sci., 21(2), 95-104. https://doi.org/10.7494/cmms.2021.2.0739.
- Fahmy, M.A. (2021f), "Boundary element modeling of 3T nonlinear transient magneto-thermo-viscoelastic wave propagation problems in anisotropic circular cylindrical shells", Compos. Struct., 277, 114655. https://doi.org/10.1016/j.compstruct.2021.114655.
- Fahmy, M.A. (2022), "Boundary element modeling of fractional nonlinear generalized photothermal stress wave propagation problems in FG anisotropic smart semiconductors", Eng. Anal. Bound. Elem., 134, 665-679. https://doi.org/10.1016/j.enganabound.2021.11.009.
- Fing, Y.Y., Yang, X.J., Liu, J.G. and Chen, Z.Q. (2021), "Rheological analysis of the general fractional-order viscoelastic model involving the Miller-Ross kernel", Acta Mechanica, 232(7), 3141-3148. https://doi.org/10.1007/s00707-021-02994-7.
- Gao, F. and Yang, X.J. (2016), "Fractional maxwell fluid with fractional derivative without singular kernel", Therm. Sci., 20(3), S871-S877. https://doi.org/10.2298/TSCI16S3871G.
- Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elast., 31(3), 189-208. https://doi.org/10.1007/BF00044969.
- Hendy, M.H., El-Attar, S.I. and Ezzat, M.A. (2020), "On thermoelectric materials with memory-dependent derivative and subjected to a moving heat source", Microsyst. Tchnolog., 26, 595-608. https://doi.org/10.1007/s00542-019-04519-8.
- Hetnarski, R.B. and Ignaczak, J. (1999), "Generalized thermoelasticity", J. Therm. Stress., 22, 451-476. https://doi.org/10.1080/014957399280832.
- Honig, G. and Hirdes U. (1984), "A method for the numerical inversion of the Laplace transform", J. Comput. Appl. Math., 10, 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
- Hu, M.S., Baleanu, D. and Yang, X.J. (2013), "One-phase problems for discontinuous heat transfer in fractal media", Math. Prob. Eng., 2013, Article ID 358473. https://doi.org/10.1155/2013/358473.
- Kaur, I., Lata, P. and Singh, K. (2021), "Reflection of plane harmonic wave in rotating media with fractional order heat transfer and two temperature", Part. Diff. Equ. Appl. Math., 4, 100049. https://doi.org/10.1016/j.padiff.2021.100049.
- Knopoff, L. (1955), "The interaction between elastic wave motion and a magnetic field in electrical conductors", J. Geophys. Res., 60, 441-456. https://doi.org/10.1029/JZ060i004p00441.
- Kumar, R. and Chawla, V. (2011), "A study of plane wave propagation in anisotropic three-phase-lag and two- phase-lag model", Int. Commun. Heat Mass Transf., 38(9), 1262-1268. https://doi.org/10.1016/j.icheatmasstransfer.2011.07.005.
- Kumar, R. and Rani, L. (2004), "Deformation due to mechanical and thermal sources in generalize orthorhombic thermoelastic material", Sadhana, 29, 429. https://doi.org/10.1080/014957390523697.
- Kumar, R., Sharma, N. and Lata, P. (2016a), "Effects of Hall current in a transversely isotropic magneto-thermoelastic two temperature medium with rotation and with and without energy dissipation due to normal force", Struct. Eng. Mech., 57(1), 91-103. https://doi.org/10.12989/sem.2016.57.1.091.
- Kumar, R., Sharma, N. and Lata, P. (2016b), "Thermo- mechanical interactions in a transversely isotropic magnetothermoelastic with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Math. Model., 40(13-14), 6560-6575. https://doi.org/10.1016/j.apm.2016.01.061.
- Kumar, R., Sharma, N. and Lata, P. (2017), "Effects of Hall current and two temperatures in transversely isotropic magnetothermoelastic with and without energy dissipation due to Ramp type heat", Mech. Adv. Mater. Struct., 24(8), 625-635. https://doi.org/10.1080/15376494.2016.1196769.
- Lata, P. and Kaur, I., (2018), "Effect of hall current in transversely Isotropic magneto-thermoelastic rotating medium with fractional order heat Transfer due to normal force", Adv. Mater. Res., 7(3), 203-220. https://doi.org/10.12989/amr.2018.7.3.203.
- Lata, P. and Singh, S. (2021), "Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer", Steel Compos. Struct., 38(2), 141-150. https://doi.org/10.12989/scs.2021.38.2.141.
- Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in anisotropic thermoelastic medium", Steel Compos. Struct., 22(3), 567-587. https://doi.org/10.12989/scs.2016.22.3.567.
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
- Marin, M. (1997), "On weak solutions in elasticity of dipolar bodies with voids", J. Comput. Appl. Math., 82(1- 2), 291-297. https://doi.org/10.1016/S0377-0427(97)00047-2 .
- Marin, M. (2010), "Harmonic vibrations in thermoelasticity of microstretch materials", J. Vib. Acoust., 132(4), 044501. https://doi.org/10.1115/1.4000971.
- Marin, M., Agarwal, R.P. and Othman, M.I.A. (2014), "Localization in time of solutions for thermoelastic micropolar materials with voids", Comput. Mater. Continua, 40(1), 35-48.
- Othman, M.I.A. (2005), "Generalized electromagneto- thermoelastic plane waves by thermal shock problem in a finite conductivity half-space with one relaxation time", Multi. Model. Mater. Struct., 1(3), 231-250. https://doi.org/10.1163/157361105774538557.
- Othman, M.I.A. and Lotfy, Kh. (2009), "Two-dimensional problem of generalized magneto-thermoelasticity with temperature dependent elastic moduli for different theories", Multi. Model. Mater. Struct., 5(3) 235 - 242. https://doi.org/10.1163/157361109789016961.
- Othman, M.I.A. and Said, S.M. (2014), "2-D problem of magneto-thermoelasticity fiber-reinforced medium under temperature-dependent properties with three-phase-lag theory", Meccanica, 49(5), 1225-1241. https://doi.org/10.1007/s11012-014-9879-z.
- Othman, M.I.A. and Said, S.M. (2019), "Effect of gravity field and moving internal heat source on a 2-D problem of thermoelastic fiber-reinforced medium: Comparison of different theories", Mech. Adv. Mater. Struct., 26(9), 796-804. https://doi.org/10.1080/15376494.2017.1410917.
- Othman, M.I.A. and Song, Y.Q. (2009), "The effect of rotation on 2-D thermal shock problems for a generalized magneto-thermoelasticity half-space under three theories", Multi. Model. Mater. Struct., 5(1), 43-58. https://doi.org/10.1108/15736105200900003.
- Othman, M.I.A., Said, S.M. and Marin, M. (2019), "A novel model of plane waves of two-temperature fiberreinforced thermoelastic medium under the effect of gravity with three-phase-lag model", Int. J. Numer. Meth. Heat Fluid Flow, 29(12), 4788-4806. https://doi.org/10.1108/HFF-04-2019-0359.
- Purkait, P., Sur, A. and Kanoria, M. (2017), "Thermoelastic interaction in a two-dimensional infinite space due to memory-dependent heat transfer", Int. J. Adv. Appl. Math. Mech., 5(1), 28-39.
- Roy Choudhuri, S.K. (2007), "On a thermoelastic three- phase-lag model", J. Therm. Stress., 30(3), 231-238. https://doi.org/10.1080/01495730601130919.
- Said, S.M. and Othman, M.I.A. (2016), "Wave propagation in a two-temperature fiber-reinforced magnetothermo-elastic medium with three-phase-lag model", Struct. Eng. Mech., 57(2), 201-220. http://doi.org/10.12989/sem.2016.57.2.201.
- Said, S.M., Abd-Elaziz, E.M. and Othman, M.I.A. (2020), "Modeling of memory-dependent derivative in a rotating magneto-thermoelastic diffusive medium with variable thermal conductivity", Steel Compos. Struct., 36(6), 617-629. https://doi.org/10.12989/scs.2020.36.6.617.
- Verma, P.D.S. and Rana, O.H. (1983), "Rotation of a circular cylindrical tube reinforced by fibers lying along helices", Mech. Mater., 2, 353-359. https://doi.org/10.1016/0167-6636(83)90026-1.
- Wang, J.L. and Li, H.F. (2011), "Surpassing the fractional derivative:Concept of the memory-dependent derivative", Comput. Math. Appl., 62(3), 1562-1567. http://doi.org/10.1016/j.camwa.2011.04.028.
- Weitsman, Y. (1972), "On wave propagation and energy scattering in materials reinforced by inextensible fibers", Int. J. Solid. Struct., 8(5), 627-650. https://doi.org/10.1016/0020-7683(72)90033-9.
- Xue, Z., Chen, Z. and Tian, X. (2018), "Thermoelastic analysis of a cracked strip under thermal impact based on memory-dependent heat conduction model", Eng. Fract. Mech., 200, 479-498. https://doi.org/10.1016/j.engfracmech.2018.08.018.
- Xue, Z., Tian, X. and Liu, J.L. (2020), "Thermal shock fracture of a crack in a functionally gradient halfspace based on the memory-dependent heat conduction model", Appl. Math. Model., 80, 840-858. https://doi.org/10.1016/j.apm.2019.11.021.
- Yang, X.J, (2019a), "New general calculi with respect to another functions applied to describe the newtonlike dashpot models in anomalous viscoelasticity", Therm. Sci., 23(6B), 3751-3757. https://doi.org/10.2298/TSCI180921260Y.
- Yang, X.J, (2019b), "New non-conventional methods for quantitative concepts of anomalous rheology", Therm. Sci., 23(6 Part B), 4117-4127. https://doi.org/10.2298/TSCI191028427Y.
- Yang, X.J, (2020a), "New insight into the Fourier-like and Darcy-like models in porous medium", Therm. Sci., 24(6A), 3847-3858. https://doi.org/10.2298/TSCI2006847Y.
- Yang, X.J. (2020b), "The vector calculus with respect to monotone functions, applied to heat conduction problems", Therm. Sci., 24(6B), 3949-3959. https://doi.org/10.2298/TSCI2006949Y.
- Yang, X.J. (2021), "An insight on the fractal power law flow: from a Hausdorff vector calculus perspective", Fract., https://doi.org/10.1142/S0218348X22500542.
- Yang, X.J. and Liu, J.G. (2021), "A new insight to the scaling-law fluid associated with the Mandelbrot scaling law", Therm. Sci., 25(6 Part B), 4561-4568. https://doi.org/10.2298/TSCI2106561Y.
- Yang, X.J., Cui, P. and Liu, J.G. (2021a), "A new viewpoint on theory of the scaling-law heat conduction process", Therm. Sci., 25(6 Part B), 4505-4513. https://doi.org/10.2298/TSCI2106505Y
- Yang, X.J., Feng, G. and Yang, J. (2021b), "General fractional calculus with nonsingular kernels: New prospective on viscoelasticity", Meth. Math. Model. Comput. Complex Syst., 373, 135-157. https://doi.org/10.1007/978-3-030-77169-0_6.
- Yang, X.J., Minvydas, R. and Thiab, T. (2019), "A new general fractional-order derivative with Rabotnov fractional-exponential kernel applied to model the anomalous heat transfer", Therm. Sci., 23(3 Part A), 1677-1681. https://doi.org/10.2298/TSCI180320239Y.
- Yu, Y.J., Hu, W. and Tian, X.G. (2014), "A novel generalized thermoelasticity model based on memorydependent derivative", Int. J. Eng. Sci., 811, 123-134. https://doi.org/10.1016/j.ijengsci.2014.04.014.