DOI QR코드

DOI QR Code

벤토나이트 완충재 장기 침식을 모사하기 위한 Two-region 모델 소개

Introduction of Two-region Model for Simulating Long-Term Erosion of Bentonite Buffer

  • 투고 : 2023.08.14
  • 심사 : 2023.08.21
  • 발행 : 2023.08.31

초록

벤토나이트는 팽윤 능력과 낮은 투수율 등의 유리한 특성으로 인해 고준위방폐물처분장에서 완충재로 널리 인정받고 활용되고 있으며, 낮은 투수율로 인해 방사성 핵종이 주변 암반으로 이동하는 것을 효과적으로 방지하여 방사성 폐기물의 안전한 처분을 보장하는 데 중요한 역할을 한다. 그러나 벤토나이트 완충재의 장기적인 성능은 여전히 지속적인 연구의 대상으로 남아 있으며, 주요 우려 사항 중 하나는 벤토나이트의 팽윤과 지하수 흐름에 의한 완충재의 침식이다. 벤토나이트 완충재의 침식은 완충재의 무결성을 손상시키고 지하수를 통한 방사성 핵종의 이동을 촉진할 수 있는 콜로이드 형성을 초래하여, 결과적으로 방사성 핵종 이동 위험을 높임으로써 처분장 안전에 중대한 영향을 미칠 수 있다. 따라서 벤토나이트 완충재의 침식 메커니즘과 침식 정도를 수치 해석적으로 정량화하여 장기적인 벤토나이트 완충재의 성능 및 콜로이드 형성 정도를 평가하는 것이 고준위방폐물처분장의 안전성 평가에 매우 중요하다. 본 기술 보고에서는 동적 벤토나이트 확산 모델을 기반으로 거동이 유사한 영역을 두 개로 분류하여 벤토나이트의 균열 침투 및 콜로이드 형성을 모사할 수 있도록 제안된 모델인 Two-region 모델을 소개하였으며, 이 모델을 이용해 벤토나이트 완충재 침식 정도를 정량적으로 평가하였다.

Bentonite is widely recognized and utilized as a buffer material in high-level radioactive waste repositories, mainly due to its favorable characteristics such as swelling capability and low permeability. Bentonite buffers play an important role in ensuring the safe disposal of radioactive waste by providing a low permeability barrier and effectively preventing the migration of radionuclides into the surrounding rock. However, the long-term performance of bentonite buffers still remains a subject of ongoing research, and one of the main concerns is the erosion of the buffer induced by swelling and groundwater flow. The erosion of the bentonite buffer can significantly impact repository safety by compromising the integrity of buffer and leading to the formation of colloids that may facilitate the transport of radionuclides through groundwater, consequently elevating the risk of radionuclide migration. Therefore, it is very important to numerically quantify the erosion of bentonite buffer to evaluate the long-term performance of bentonite buffer, which is crucial for the safety assessment of high-level radioactive waste disposal. In this technical note, Two-region model is introduced, a proposed model to simulate the erosion behavior of bentonite based on a dynamic bentonite diffusion model, and quantitative evaluation is conducted for the bentonite buffer erosion with this model.

키워드

과제정보

This work was supported by the Institute for Korea Spent Nuclear Fuel (iKSNF) and National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT, MSIT) (No. NRF-2021M2E1A1085185).

참고문헌

  1. Alonso, E.E., Gens, A., and Josa, A., 1990, A constitutive model for partially saturated soils, Geotechnique, 40(3), 405-430. https://doi.org/10.1680/geot.1990.40.3.405
  2. Alonso, E.E., Vaunat, J., and Gens, A., 1999, Modelling the mechanical behaviour of expansive clays, Engineering Geology, 54(1-2), 173-183. https://doi.org/10.1016/S0013-7952(99)00079-4
  3. Borgesson, L., Hedstrom, M., Birgersson, M., and Karnland, O., 2018, Bentonite swelling into fractures at conditions above the critical coagulation concentration, Swedish Nuclear Fuel and Waste Management Company, TR 17-11, Svensk Karnbranslehantering AB.
  4. Hong, C.H., Kim, J.W., Kim, J.S., and Lee, C., 2022, Review of Erosion and Piping in Compacted Bentonite Buffers Considering Buffer-Rock Interactions and Deduction of Influencing Factors, Tunnel and Underground Space, 32(1), 30-58. https://doi.org/10.7474/TUS.2022.32.1.030
  5. IAEA, 2011, Geological disposal facilities for radioactive waste, IAEA Specific Safety Guide No. SSG-14.
  6. Lee, C., Cho, W.J., Kim, J.S., and Kim, G.Y., 2020a, Penetration of Compacted Bentonite into the Discontinuity in the Excavation Damaged Zone of Deposition Hole in the Geological Repository, Tunnel and Underground Space, 30(3), 193-213. https://doi.org/10.7474/TUS.2020.30.3.193
  7. Lee, J., Kim, I., Ju, H.J., Choi, H., and Cho, D.K., 2020b, Proposal of an Improved Concept Design for the Deep Geological Disposal System of Spent Nuclear Fuel in Korea, J. Nucl. Fuel Cycle Waste Technol., 18, 1-19. https://doi.org/10.7733/jnfcwt.2020.18.S.1
  8. Liu, L. and Neretnieks, I., 2006, Physical and chemical stability of the bentonite buffer, Swedish Nuclear Fuel and Waste Management Company, R 06-103, Svensk Karnbranslehantering AB.
  9. Liu, L., 2011, A model for the viscosity of dilute smectite gels, Physics and Chemistry of the Earth, 36, 1792-1798. https://doi.org/10.1016/j.pce.2011.07.081
  10. Moreno, L., Liu, L., and Neretnieks, I., 2011, Erosion of sodium bentonite by flow and colloid diffusion, Physics and Chemistry of the Earth, Parts A/B/C, 36(17-18), 1600-1606. https://doi.org/10.1016/j.pce.2011.07.034
  11. Neretnieks, I., Liu, L., and Moreno, L., 2009, Mechanisms and models for bentonite erosion, Swedish Nuclear Fuel and Waste Management Company, TR 09-35, Svensk Karnbranslehantering AB.
  12. Neretnieks, I., Liu, L., and Moreno, L., 2010, Mass transfer between waste canister and water seeping in rock fractures. Revisiting the Q-equivalent model, TR-10-42, Svensk Karnbranslehantering AB.
  13. Neretnieks, I., Moreno, L., and Liu, L., 2017, Clay erosion: impact of flocculation and gravitation, Swedish Nuclear Fuel and Waste Management Company, TR 16-11, Svensk Karnbranslehantering AB.
  14. Sane, P., Laurila, T., Olin, M., and Koskinen, K., 2013, Current status of mechanical erosion studies of bentonite buffer, Posiva Oy, No. POSIVA-12-45.