DOI QR코드

DOI QR Code

Utilization of an Artificial Intelligence Program Using the Greulich-Pyle Method to Evaluate Bone Age in the Skeletal Maturation Stage

골 성숙도 단계의 골령 평가를 위한 Greulich-Pyle 방법을 이용한 인공지능 프로그램의 활용

  • Jihoon Kim (Department of Pediatric Dentistry, School of Dentistry, Dental and Life Science Institute, Pusan National University) ;
  • Hyejun Seo (Department of Pediatric Dentistry, School of Dentistry, Dental and Life Science Institute, Pusan National University) ;
  • Soyoung Park (Department of Pediatric Dentistry, Dental Research Institute, Pusan National University Dental Hospital) ;
  • Eungyung Lee (Department of Pediatric Dentistry, School of Dentistry, Dental and Life Science Institute, Pusan National University) ;
  • Taesung Jeong (Department of Pediatric Dentistry, School of Dentistry, Dental and Life Science Institute, Pusan National University) ;
  • Ok Hyung Nam (Department of Pediatric Dentistry, Kyung Hee University Dental Hospital) ;
  • Sungchul Choi (Department of Pediatric Dentistry, Kyung Hee University Dental Hospital) ;
  • Jonghyun Shin (Department of Pediatric Dentistry, School of Dentistry, Dental and Life Science Institute, Pusan National University)
  • 김지훈 (부산대학교 치의학전문대학원 소아치과학교실 및 치의생명과학연구소) ;
  • 서혜준 (부산대학교 치의학전문대학원 소아치과학교실 및 치의생명과학연구소) ;
  • 박소영 (부산대학교 치과병원 소아치과 및 치의학연구소) ;
  • 이은경 (부산대학교 치의학전문대학원 소아치과학교실 및 치의생명과학연구소) ;
  • 정태성 (부산대학교 치의학전문대학원 소아치과학교실 및 치의생명과학연구소) ;
  • 남옥형 (경희대학교 치과병원 소아치과) ;
  • 최성철 (경희대학교 치과병원 소아치과) ;
  • 신종현 (부산대학교 치의학전문대학원 소아치과학교실 및 치의생명과학연구소)
  • Received : 2022.10.07
  • Accepted : 2022.11.30
  • Published : 2023.02.28

Abstract

The purpose of this study was to measure bone age using an artificial intelligence program based on the Greulich-Pyle (GP) method to find out the bone age corresponding to each stage of cervical vertebral maturation (CVM) and the middle phalanx of the third finger (MP3). This study was conducted on 3,118 patients who visited pediatric dentistry at Kyung Hee University Dental Hospital and Pusan National University Dental Hospital from 2013 to 2021. The CVM stage was divided into 5 stages according to the classification by Baccetti, and the MP3 stage was divided into 5 stages according to the methods of Hägg and Taranger. Based on the GP method, bone age was evaluated using an artificial intelligence program. The pubertal growth spurt in the CVM stage was CVM II and III. The mean bone age in CVM II was 11.00 ± 1.81 years for males and 10.00 ± 1.49 years for females, and in CVM III, 13.00 ± 1.46 years for males and 12.00 ± 1.44 years for females (p < 0.0001). The pubertal growth spurt in the MP3 stage was MP3 - G stage. The bone age at the MP3 - G stage was 13.14 ± 1.07 years for males and 11.40 ± 1.09 years for females (p < 0.0001). Bone age evaluation using artificial intelligence is worth using in clinical practice, and it is expected that a faster and more accurate diagnosis will be possible.

이 연구의 목적은 Greulich-Pyle (GP)방법을 기반으로 한 인공지능 프로그램을 이용해 골령을 측정하고 경추골 성숙도(Cervical vertebral maturation, CVM)와 중지 중절골 성숙도(Middle phalanx of the third finger, MP3) 각 단계에 해당하는 골령을 파악하는 것이다. 연구는 2013년부터 2021년까지 경희대학교와 부산대학교 치과병원 소아치과에 내원한 총 3,118명을 대상으로 하였다. CVM은 Baccetti 분류에 따라 5단계로 나누었고, MP3는 Hägg와 Taranger 의 방법에 따라 5단계로 나누었다. 골령은 GP 방법 기반의 인공지능 프로그램을 통해 평가하였다. 최대 성장기의 CVM 단계는 II, III로 CVM II의 평균 골령은 남자 11.00 ± 1.81세, 여자 10.00 ± 1.49세였고, III는 남자 13.00 ± 1.46세, 여자 12.00 ± 1.44세였다(p < 0.0001). MP3 최대 성장기는 G 단계로 평균 골령은 남자 13.14 ± 1.07세, 여자 11.40 ± 1.09세였다(p < 0.0001). 인공지능을 통한 골령 평가는 임상적 활용 가치가 있으며 신속하고 정확한 진단이 가능할 것으로 예상된다.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2020R1G1A1011629).

References

  1. Lee KH : Growth assessment and diagnosis of growth disorders in childhood. Clin Exp Pediatr, 46:1171-1177, 2003. 
  2. Sung IK : Monitoring growth in childhood: practical clinical guide. J Korean Med Assoc, 52:211-224, 2009.  https://doi.org/10.5124/jkma.2009.52.3.211
  3. Kim DH : Assessment of Bone Age During Pubertal Age. J Korean Soc Pediatr Endocrinol, 16:135-138, 2011.  https://doi.org/10.6065/jkspe.2011.16.3.135
  4. Pancherz H, Hagg U : Dentofacial orthopedics in relation to somatic maturation: An analysis of 70 consecutive cases treated with the Herbst appliance. Am J Orthod, 88:273-287, 1985.  https://doi.org/10.1016/0002-9416(85)90126-5
  5. Hassel B, Farman AG : Skeletal maturation evaluation using cervical vertebrae. Am J Orthod Dentofacial Orthop, 107:58-66, 1995.  https://doi.org/10.1016/S0889-5406(95)70157-5
  6. Fishman LS : Maturational patterns and prediction during adolescence. Angle Orthod, 57:178-193, 1987. 
  7. Bjork A, Helm S : Prediction of the age of maximum puberal growth in body height. Angle Orthod, 37:134-143, 1967. 
  8. Leite HR, O'Reilly MT, Close JM : Skeletal age assessment using the first, second, and third fingers of the hand. Am J Orthod Dentofacial Orthop, 92:492-498, 1987.  https://doi.org/10.1016/0889-5406(87)90231-9
  9. Liliequist B, Lundberg M : Skeletal and tooth development. A methodologic investigation. Acta Radiol Diagn, 11:97-112, 1971.  https://doi.org/10.1177/028418517101100201
  10. Flores-Mir C, Burgess CA, Champneyn M, Jensen RJ, Pitcher MR, Major PW : Correlation of skeletal maturation stages determined by cervical vertebrae and hand-wrist evaluations. Angle Orthod, 76:1-5, 2006. 
  11. Gandini P, Mancini M, Andreani F : A comparison of hand-wrist bone and cervical vertebral analyses in measuring skeletal maturation. Angle Orthod, 76:984-989, 2006.  https://doi.org/10.2319/070605-217
  12. Stiehl J, Muller B, Dibbets J : The development of the cervical vertebrae as an indicator of skeletal maturity: comparison with the classic method of hand-wrist radiograph. J Orofac Orthop, 70:327-335, 2009.  https://doi.org/10.1007/s00056-009-9918-x
  13. Roman PS, Palma JC, Oteo MD, Nevado E : Skeletal maturation determined by cervical vertebrae development. Eur J Orthod, 24:303-311, 2002.  https://doi.org/10.1093/ejo/24.3.303
  14. Garn SM : Radiographic atlas of skeletal development of the hand and wrist. Am J Hum Genet, 11:282-283, 1959. 
  15. Chapman SM : Ossification of the adductor sesamoid and the adolescent growth spurt. Angle Orthod, 42:236-244, 1972. 
  16. Kim SY, Oh YJ, Shin JY, Rhie YJ, Lee KH : Comparison of the Greulich-Pyle and Tanner Whitehouse (TW3) Methods in Bone Age Assessment. J Korean Soc Pediatr Endocrionol, 13:50-55, 2008. 
  17. Lee JS : The application of TW3 method for prediction about bone age in hand AP image of children. J Korean Soc Radiol, 9:349-356, 2015.  https://doi.org/10.7742/jksr.2015.9.6.349
  18. Buckler JM : How to make the most of bone ages. Arch Dis Child, 58:761-763, 1983.  https://doi.org/10.1136/adc.58.10.761
  19. Kim SY, Yang SW : Assessment of Bone Age: A comparison of the Greulich Pyle Method to the Tanner Whitehouse Method. J Korean Endocr Soc, 13:198-204, 1998. 
  20. Milner GR, Levick RK, Kay R : Assessment of bone age: a comparison of the Greulich and Pyle, and the Tanner and Whitehouse methods. Clin Radiol, 37:119-121, 1986.  https://doi.org/10.1016/S0009-9260(86)80376-2
  21. Soudack M, Ben-Shlush A, Jacobson J, Raviv-Zilka L, Eshed I, Hamiel O : Bone age in the 21st century: is Greulich and Pyle's atlas accurate for Israeli children? Pediatr Radiol, 42:343-348, 2012.  https://doi.org/10.1007/s00247-011-2302-1
  22. Cantekin K, Celikoglu M, Miloglu O, Dane A, Erdem A : Bone age assessment: the applicability of the Greulich-Pyle method in Eastern Turkish children. J Forensic Sci, 57:679-682, 2012.  https://doi.org/10.1111/j.1556-4029.2011.02035.x
  23. Paxton ML, Lamont AC, Stillwell AP : The reliability of the Greulich-Pyle method in bone age determination among Australian children. J Med Imaging Radiat Oncol, 57:21-24, 2013.  https://doi.org/10.1111/j.1754-9485.2012.02462.x
  24. Dahlberg PS, Mosdol A, Ding Y, Bleka O, Rolseth V, Straumann GH, Skjerven-Martinsen M, Delaveris GJM, Vist GE : A systematic review of the agreement between chronological age and skeletal age based on the Greulich and Pyle atlas. Eur Radiol, 29:2936-2948, 2019.  https://doi.org/10.1007/s00330-018-5718-2
  25. Lee JH, Kim DH, Jeong SN, Choi SH : Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent, 77:106-111, 2018.  https://doi.org/10.1016/j.jdent.2018.07.015
  26. Ariji Y, Yanashita Y, Kutsuna S, Muramatsu C, Fukuda M, Kise Y, Nozawa M, Kuwada C, Fujita H, Katsumata A, Ariji E : Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique. Oral Surg Oral Med Oral Pathol Oral Radiol, 128:424-430, 2019.  https://doi.org/10.1016/j.oooo.2019.05.014
  27. Russel S, Norvig P : Artificial intelligence: a modern approach, 3rd ed. Pearson Prentice Hall, Saddle River, 1-5, 2010. 
  28. LeCun Y, Bengio Y, Hinton G : Deep learning. Nature, 521:436-444, 2015.  https://doi.org/10.1038/nature14539
  29. Lee BD, Lee MS : Automated bone age assessment using artificial intelligence: the future of bone age assessment. Korean J Radiol, 22:792-800, 2021.  https://doi.org/10.3348/kjr.2020.0941
  30. Kim JR, Shim WH, Yoon HM, Hong SH, Lee JS, Cho YA, Kim S : Computerized bone age estimation using deep learning based program: evaluation of the accuracy and efficiency. AJR Am J Roentgenol, 209:1374-1380, 2017.  https://doi.org/10.2214/AJR.17.18224
  31. Perinetti G, Perillo L, Franchi L, Di Lenarda R, Contardo L : Maturation of the middle phalanx of the third finger and cervical vertebrae: a comparative and diagnostic agreement study. Orthod Craniofac Res, 17:270-279, 2014.  https://doi.org/10.1111/ocr.12052
  32. Wong RWK, Alkhal HA, Rabie ABM : Use of cervical vertebral maturation to determine skeletal age. Am J Orthod Dentofacial Orthop, 136:484.E1-E6, 2009.  https://doi.org/10.1016/j.ajodo.2007.08.033
  33. Kasimoglu Y, Marsan G, Gencay K : Skeletal Maturity Prediction Using Radiographs of the Medial Phalanx of the Third Finger and Cervical Vertebrae. Int J Med Invest, 9:42-49, 2020. 
  34. Jeon JY, Kim CS, Kim JS, Choi SH : Correlation and Correspondence between Skeletal Maturation Indicators in Hand-Wrist and Cervical Vertebra Analyses and Skeletal Maturity Score in Korean Adolescents. Children, 8:910, 2021. 
  35. Baccetti T, Franchi L, McNamara Jr. JA : An improved version of the cervical vertebral maturation (CVM) method for the assessment of mandibular growth. Angle Orthod, 72:316-323, 2002. 
  36. Hagg U, Taranger J : Skeletal stages of the hand and wrist as indicators of the pubertal growth spurt. Acta Odontol Scand, 38:187-200, 1980.  https://doi.org/10.3109/00016358009004719
  37. Satoh M : Bone age: assessment methods and clinical applications. Clin Pediatr Endocrinol, 24:143-152, 2015.  https://doi.org/10.1297/cpe.24.143
  38. King DG, Steventon DM, O'Sullivan MP, Cook AM, Hornsby VP, Jefferson IG, King PR : Reproducibility of bone ages when performed by radiology registrars: an audit of Tanner and Whitehouse II versus Greulich and Pyle methods. Br J Radiol, 67:848-851, 1994.  https://doi.org/10.1259/0007-1285-67-801-848
  39. Li D, Pehrson LM, Lauridsen CA, Tottrup L, Fraccaro M, Elliott D, Zajac HD, Darkner S, Carlsen JF, Nielsen MB : The added effect of artificial intelligence on physicians' performance in detecting thoracic pathologies on CT and chest X-ray: A systematic review. Diagnostics, 11:2206, 2021. 
  40. Lea WW, Hong SJ, Nam HK, Kang WY, Yang ZP, Noh EJ : External validation of deep learning-based boneage software: a preliminary study with real world data. Sci Rep, 12:1232, 2022. 
  41. Hwang J, Yoon HM, Hwang JY, Kim PH, Bak B, Bae BU, Sung J, Kim HJ, Jung AY, Cho YA, Lee JS : Re-Assessment of Applicability of Greulich and Pyle-Based Bone Age to Korean Children Using Manual and Deep Learning-Based Automated Method. Yonsei Med J , 63:683-691, 2022.  https://doi.org/10.3349/ymj.2022.63.7.683
  42. Kim JR, Lee YS, Yu J : Assessment of bone age in prepubertal healthy Korean children: comparison among the Korean standard bone age chart, Greulich-Pyle method, and Tanner-Whitehouse method. Korean J Radiol, 16:201-205, 2015.  https://doi.org/10.3348/kjr.2015.16.1.201
  43. Cole AJ, Webb L, Cole TJ : Bone age estimation: a comparison of methods. Br J Radiol, 61:683-686, 1988.  https://doi.org/10.1259/0007-1285-61-728-683
  44. Oh Y, Lee R, Kim HS : Evaluation of skeletal maturity score for Korean children and the standard for comparison of bone age and chronological age in normal children. J Pediatr Endocrinol Metab, 25:279-284, 2012.  https://doi.org/10.1515/jpem-2012-0028
  45. Chiang KH, Chou ASB, Yen PS, Ling CM, Lin C, Lee CC, Chang PY : The reliability of using Greulich-Pyle method to determine children's bone age in Taiwan. Tzu Chi Med J, 17:417-420, 2005. 
  46. Alshamrani K, Messina F, Offiah AC : Is the Greulich and Pyle atlas applicable to all ethnicities? A systematic review and meta-analysis. Eur Radiol, 29:2910-2923, 2019.  https://doi.org/10.1007/s00330-018-5792-5
  47. Patel PS, Chaudhary AR, Dudhia BB, Bhatia PV, Soni NC, Jani YV : Accuracy of two dental and one skeletal age estimation methods in 6-16 year old Gujarati children. J Forensic Dent Sci, 7:18-27, 2015.  https://doi.org/10.4103/0975-1475.150298
  48. Al-Hadlaq A, Al-Qarni M, Al-Kahtani A, Al-Obaid A : Comparative study between hand-wrist method and cervical vertebral maturation method for evaluation of skeletal maturity in Saudi boys. Pak Oral Dent J, 27:187-192, 2007. 
  49. Kim JH, Yun S, Hwang SS, Shim JO, Chae HW, Lee YJ, Lee JH, Kim SC, Lim D, Yang SW, Oh K, Moon JS; Committee for the Development of Growth Standards for Korean Children and Adolescents; Committee for School Health and Public Health Statistics, the Korean Pediatric Society; Division of Health and Nutrition Survey, Korea Centers for Disease Control and Prevention : The 2017 Korean National Growth Charts for children and adolescents: development, improvement, and prospects. Korean J Pediatr, 61:135-149, 2018.  https://doi.org/10.3345/kjp.2018.61.5.135
  50. Madhu S, Hegde AM, Munshi AK : The developmental stages of the middle phalanx of the third finger (MP3): a sole indicator in assessing the skeletal maturity? J Clin Pediatr Dent, 27:149-156, 2003.  https://doi.org/10.17796/jcpd.27.2.qtj75rg3714l5543
  51. Krailassiri S, Anuwongnukroh N, Dechkunakorn S : Relationships between dental calcification stages and skeletal maturity indicators in Thai individuals. Angle Orthod, 72:155-166, 2002. 
  52. Yoo HK, Ra JY, Lee JW : Skeletal Maturity Evaluation using Maxillary Canine Development in Growing Children. J Korean Acad Pediatr Dent, 46:247-254, 2019.  https://doi.org/10.5933/JKAPD.2019.46.3.247
  53. Lee YJ, Mah YJ : Skeletal Age Assessment of SMI and MP3 Stages to Predict the Pubertal Growth Spurt. J Korean Acad Pedatr Dent, 46:233-238, 2019.  https://doi.org/10.5933/JKAPD.2019.46.3.233
  54. Yeon KM : Standard bone-age of infants and children in Korea. J Korean Med Sci, 12:9-16, 1997.  https://doi.org/10.3346/jkms.1997.12.1.9
  55. Hegde DY, Baliga S, Yeluri R, Munshi AK : Digital radiograph of the middle phalanx of the third finger (MP3) region as a tool for skeletal maturity assessment. Indian J Dent Res, 23:447-453, 2012.  https://doi.org/10.4103/0970-9290.104947
  56. Prion S, Haerling KA : Making sense of methods and measurement: Spearman-rho ranked-order correlation coefficient. Clin Simul Nurs, 10:535-536, 2014. https://doi.org/10.1016/j.ecns.2014.07.005