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TOPOLOGICALLY STABLE POINTS AND UNIFORM LIMITS

Namjip Koo and Hyunhee Lee

Abstract. In this paper we study a pointwise version of Walters topolog-

ical stability in the class of homeomorphisms on a compact metric space.

We also show that if a sequence of homeomorphisms on a compact metric
space is uniformly expansive with the uniform shadowing property, then

the limit is expansive with the shadowing property and so topologically
stable. Furthermore, we give examples to illustrate our results.

1. Introduction and preliminaries

The concepts of the shadowing property, expansivity and topological sta-
bility play an important role in the qualitative theory of dynamical systems
(see [1, 13]). Walters proved that every expansive homeomorphism with the
shadowing property is topologically stable (see [15, Theorme 4]). Variant ba-
sic notions of dynamical systems were studied in the pointwise viewpoint (see
[2, 3, 5–7, 11]). Morales [11] introduced the notion of a shadowable point and
proved that the shadowing property is equivalent to all points to be shadowable
in the class of homeomorphisms on a compact metric space. Also Koo et al. [7]
decomposed the topological stability (in the sense of Walters in [15]) into the
corresponding notion for points and showed that every shadowable point of an
expansive homeomorphism of a compact metric space is topologically stable.
To present well known notions of dynamical systems and our main results that
is to extend the topological stability in the sense of Walters to pointswise view-
point in the class of homeomorphisms on compact metric spaces, let us recall
basic notions of dynamical systems which is used in sequential.

Let X be a compact metric space with metric d and f : X → X be a
homeomorphism.

For any x ∈ X, the set {fn(x)}n∈Z is called the orbit of x under f denoted
by Of (x). For δ > 0, a sequence {xi}i∈Z of points in X is said to be a δ-pseudo
orbit of f if d(f(xi), xi+1) < δ for all i ∈ Z. Given ε > 0, a sequence ξ = {xi}i∈Z
is called to be ε-traced (or shadowed) by a point z ∈ X if d(f i(z), xi) < ε for
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all i ∈ Z. A subset B of X is said to be f -invariant for a homeomorphism f if
f(B) = B.

We say that a homeomorphism f : X → X has the shadowing property
through a subset K of X if for every ε > 0 there is δ > 0 such that every
δ-pseudo orbit {xi}i∈Z of f through K (i.e., x0 ∈ K) can be ε-shadowed (see
[13]). We say that a homeomorphism f : X → X has the shadowing property
if for every ε > 0 there is δ > 0 such that every δ-pseudo orbit ξ = {xi}i∈Z is
ε-shadowed by a point in X. The theory of the shadowing property has been
widely studied for the class of homeomorphisms on a compact metric space (see
[1, 13]).

We recall some basic notions of dynamical systems.
First we introduce the notion of shadowable points for homeomorphisms

which is defined to be a point such that the shadowing lemma holds for pseudo
orbits through the point.

We say that a point x ∈ X is a shadowable point if for every ϵ > 0 there
exists δx > 0 such that every δx-pseudo orbit ξ = {xi}i∈Z with x0 = x can
be ϵ-shadowed by some point (see [11, Definition 1.1]). The set of shadowable
points of f is denoted by Sh(f). We see that a homeomorphism f : X → X has
the shadowing property if and only if Sh(f) = X (see [11, Theorem 1.1(2)]).

We recall that a homeomorphism f : X → X is expansive [14] if there is
e > 0 (called the expansivity constant) such that if d(fn(x), fn(y)) ≤ e for all
n ∈ Z, whenever x, y ∈ X, then x = y.

Next we introduce the notion of expansivity from pointwise viewpoint.
We say that a point x ∈ X is uniformly expansive if there exist a neigh-

borhood U of x and a constant e > 0 such that if d(fn(z), fn(y)) ≤ e for all
n ∈ Z, whenever y, z ∈ U , then y = z. Denote by Expu(f) the set of uniformly
expansive points. Clearly, a homeomorphism f : X → X is expansive if and
only if every point of X is uniformly expansive (see [3]).

The C0-distance between maps f, g : A ⊂ X → X is defined by

dC0(f, g) = sup
x∈A

d(f(x), g(x)).

We recall that a homeomorphism f : X → X is topologically stable if for every
ε > 0 there is δ > 0 such that for every homeomorphism g : X → X satisfying
dC0(f, g) ≤ δ there is a continuous map k : X → X such that dC0(k, iX) ≤ ε
and f ◦ k = k ◦ g (see [7]). Here iX is the identity map of X.

Also we give the notion of topologically stable points of a homeomorphism
on a compact metric space (see [7, Definition 2.3]).

We say that a point x ∈ X is a topologically stable point of a homeomorphism
f : X → X of a metric space X if x satisfies the following property:

(P) For every ε > 0 there is δx > 0 such that for every homeomorphism

g : X → X satisfying dC0(f, g) ≤ δx there is a continuous map h : Og(x) → X

such that dC0(h, i
Og(x)

) ≤ ε and f ◦ h = h ◦ g, where Og(x) denotes the orbit

closure (see [7, Remark 2.2]).
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We note that a necessary condition for a homeomorphism f : X → X of
a metric space X to be topologically stable is that every x ∈ X satisfies the
above property (P). Hereafter, T(f) will denote the set of topologically stable
points of f . We see that if f is topologically stable, then every point of X
is topologically stable. But we do not know whether the converse holds (see
[7, Example 2.4]).

To discuss the dynamics of the limit of sequences of homeomorphisms on a
compact metric space, we need the following notations.

We denote by H(X) the set of all homeomorphisms f : X → X from a
compact metric space X to itself. Then we see that the space H(X) is complete
under the metric ρ0 given by ρ0(f, g) = max{dC0(f, g), dC0(f−1, g−1)} for any
f, g ∈ H(X) (see [13]).

Arbieto and Rego [3] introduced the notion of the uniform shadowing prop-
erty for a sequence of continuous maps and obtained positive entropy of the
limit. We give the notions of the uniform shadowing property and the uniform
expansiveness for sequences in the class of homeomorphisms as in the similar
ways in [3].

Let {fn}n∈N be a sequence of H(X).
We say that {fn}n∈N has the uniform shadowing property if each fn has the

shadowing property and the constants δn are the same, δn = δ for each n ∈ N.
Similarly, we say that {fn}n∈N is uniformly expansive if each fn is expansive

with the expansive constant cn and the expansive constants cn are the same,
i.e., cn = c for each n ∈ N.

The purpose of our work is to study a pointwise version of well-known Wal-
ters stability theorem [15] and the uniform limit of a sequence of homeomor-
phisms.

In this paper we investigate a pointwise version of topological stability in the
class of homeomorphisms on a compact metric space. We also study the dy-
namical behaviour of the limit of a sequence of homeomorphisms on a compact
metric space that are expansive with the shadowing property. More precisely,
we state our main results.

Theorem 1.1. Every uniformly expansive and shadowable point of each home-
omorphism on a compact metric space is a topologically stable point.

Theorem 1.2. Let {fn}n∈N be a sequence of H(X) which converges uniformly
to f ∈ H(X). If {fn}n∈N is uniformly expansive with the uniform shadowing
property, then the limit f is topologically stable.

2. Proof of main results

In this section we introduce some results that are used to show our main
theorems. Then we give proofs of our main theorems.

We recall that a point x ∈ X is an ϵ0-shadowable point of f if for given
ϵ0 > 0 there exists δ > 0 such that every δ-pseudo orbit ξ = {xi}i∈Z with
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x0 = x can be ϵ0-shadowed by a point in X. The set of ϵ0-shadowable points
of f is denoted by Sh(f, ϵ0).

We recall that a homeomorphism f : X → X has the finite shadowing
property through a subset K of X if for every ε > 0 there is δ > 0 such that
every finite δ-pseudo orbit of f through K can be ε-shadowed by a point in X.

Lemma 2.1. Let x ∈ Expu(f) ∩ Sh(f) and δ be given by the shadowableness
of x for f ∈ H(X). Then every δ-pseudo orbit of f through {x} is ε-shadowed
by a unique point in X.

Proof. Let U be a neighborhood of x. Let e be a uniformly expansive constant
of x such that 0 < ϵ < e

2 . Let ξ = {xi}i∈Z be a δ-pseudo orbit of f with x0 = x.
We can take y, z ∈ Bd(x, ϵ) that ϵ-shadowed ξ. Then one has

d(f i(y), f i(z)) ≤ d(f i(y), xi) + d(xi, f
i(z)) < 2ε ≤ e for all i ∈ Z.

Since x is a uniformly expansive point of f , we get y = z. □

Lemma 2.2. The following properties hold for each f ∈ H(X) :

(1) Sh(f),Expu(f) and T(f) are f -invariant sets.
(2) Sh(f) = Sh(f−1), Expu(f) = Expu(f

−1), T(f) = T(f−1), where f−1

is the inverse homeomorphism of f .

Proof. (1) From [11, Theorem 1.1] and [7, Theorem 2.8], respectively, we see
that Sh(f) and T(f) are f -invariant.

Now we claim that Expu(f) is f -invariant. Let y ∈ f(Expu(f)). Then there
exists a point x ∈ Expu(f) such that f(x) = y. Since x is a uniformly expansive
point, there exist a positive constant e > 0 and a neighborhood V of x such
that for each pair of distinct points z1, z2 ∈ V we have d(f i(z1), f

i(z2)) > e for
a nonzero integer i ∈ Z. Since f is continuous, U = f−1(Bd(y, e)) is an open
set containing x, where Bd(y, e) is the e-ball centered at y. Set W = U ∩ V .
Then we see that every pair of distinct points in W must be e-apart for m > 1.
Thus we obtain y ∈ Expu(f). Hence we have f(Expu(f)) ⊂ Expu(f). By the
similar argument for f−1, we can verify that the converse inclusion is true.
Hence f(Expu(f)) = Expu(f).

(2) Also we see that Sh(f) = Sh(f−1) and T(f) = T(f−1) follow from
[11, Lemma 2.6] and [7, Theorem 2.8(1)], respectively.

Next we claim that Expu(f) = Expu(f
−1). Let x ∈ Expu(f). Then there

exit a neighborhood U of x and e > 0 such that if

d(f i(z), f i(y)) < e for all i ∈ Z,(2.1)

whenever y, z ∈ U , then we have y = z. Putting i = −j for all i ∈ Z in the
above inequality (2.1), for each i ∈ Z, we have

d(f i(y), f i(z)) = d((f−1)−i(y), (f−1)−i(z))

= d((f−1)j(y), (f−1)j(z)) < e for all j ∈ Z.
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Thus we see that if d((f−1)j(y), (f−1)j(z)) < e for all j ∈ Z, whenever y, z ∈ U ,
then we also have y = z. Thus x ∈ Expu(f

−1). So Expu(f) ⊂ Expu(f
−1).

Similarly, we can prove that the converse inclusion is true. Hence Expu(f) =
Expu(f

−1). □

Let X and Y be compact metric spaces. We say that two homeomorphisms
f : X → X and g : Y → Y are topologically conjugated if there exists a
homeomorphism h : X → Y such that h◦f = g ◦h, where the homeomorphism
h is called a topological conjugacy between f and g.

Lemma 2.3. Let X and Y be compact metric spaces with metrics d and d′,
respectively. If two homeomorphisms f : X → X and g : Y → Y are topologi-
cally conjugated under a topological conjugacy h : X → Y . Then we obtain the
following properties:

Sh(g) = h(Sh(f)), Expu(g) = h(Expu(f)), T(g) = h(T(f)).

Proof. First we claim that Sh(g) = h(Sh(f)). Let y ∈ h(Sh(f)) and ε > 0.
Then there exists x ∈ Sh(f) such that h(x) = y. It follows from uniform conti-
nuity of h that there is ε1 > 0 such that d(x, x′) < ε1 implies d′(h(x), h(x′)) < ε.
Since x ∈ X is shadowable, there exists δ1 > 0 such that each δ1-pseudo orbit
{xi}i∈Z of f with x0 = x is ε1-shadowed by a point in X. Then it is enough
to show that each δ-pseudo orbit {yi}i∈Z of g with y0 = y is ε-shadowed by a
point in Y . Putting xi = h−1(yi) for all i ∈ Z, since d′(g(yi), yi) < δ for all
i ∈ Z, we have

d(f(xi), xi+1) = d((f ◦ h−1)(yi), h
−1(yi+1)) = d((h−1 ◦ g)(yi), h−1(yi+1)) < δ1

for all i ∈ Z and x0 = x = h−1(y). Thus {xi}i∈Z is a δ1-pseudo orbit of f with
x0 = x and so it is ε1-shadowed by a point z′ ∈ X. Hence we have

d′((h ◦ f i)(z′), h(xi)) = d′((gi ◦ h)(z′), yi) < ε

for all i ∈ Z. Thus the δ-pseudo orbit {yi}i∈Z of g with y0 = y is ε-shadowed by
a point z = h(z′) ∈ Y . Hence y ∈ Sh(g). This verifies that h(Sh(f)) ⊂ Sh(g).
By applying the similar argument for h−1, we can verify that the converse
inclusion is true. Hence we have Sh(g) = h(Sh(f)).

Also we see that Expu(g) = h(Expu(f)) (see [6, Proposition 2.3(2) and
2.3(3)]) and T(g) = h(T(f)) (see [7, Theorem 2.8]). The proof is complete. □

For the proof of Theorem 1.1, we also need the following result.

Lemma 2.4. Let x ∈ X be a uniformly expansive point with the expansive
constant e and U be a neighborhood of x. For each N ∈ N with N > 1 there
exists δ > 0 that d(y, z) < δ implies d(fn(y), fn(z)) < e for all n satisfying
|n| < N , whenever y, z ∈ U . Conversely, given e > 0, there exists N > 1 such
that d(fn(y), fn(z)) < e for all n with |n| < N , whenever y, z ∈ U implies
d(y, z) < δ.
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Proof. Let N > 1 be given. The continuity of f implies that δ > 0 can be
chosen as in the statement.

Conversely, let δ > 0 be given. If no N can be chosen with the property
stated, then for eachN > 1 there exist xN , yN ∈ U with d(fn(xN ), fn(yN )) ≤ e
for all n with |n| < N and d(xN , yN ) ≥ δ. Since X is compact, we suppose
that there are points x, y ∈ X such that xNi

→ x and yNi
→ y as i → ∞.

Then d(x, y) ≥ δ and also d(fn(x), fn(y)) < e for all n ∈ Z. This contradicts
the uniformly expansive property of x. This completes the proof. □

Now we give a proof of Theorem 1.1.

Proof of Theorem 1.1. Suppose that x ∈ Expu(f) ∩ Sh(f). Since x is uni-
formly expansive, there are e > 0 and a neighborhood U of x such that if
d(f i(z), f i(y)) ≤ e for all i ∈ Z, whenever y, z ∈ U , then y = z. Let 0 < ε ≤ e

4
be such that Bd(x, ε) ⊂ U and δ > 0 be given by the shadowableness of
x. Let g : X → X be a homeomorphism satisfying dC0(f, g) ≤ δ. Since
d((f ◦ gn)(x), gn+1(x)) < δ for all n ∈ Z, {gn(x)}n∈Z is a δ-pseudo orbit of
f . By Lemma 2.1, there is a unique point denoted by h(x) whose f -orbit
ε-shadowed {gn(x)}n∈Z. Then we have the map h : X → X satisfying

d(fn(h(x)), gn(x)) < ϵ for all n ∈ Z.

In particular, we have d(h(x), x) < ϵ for all x ∈ X. To prove that this map h
is well defined, we claim that gn(x) = gm(x) for n,m ∈ Z. Then gr+n(x) =
gr+m(x) for every r ∈ Z, and so

d(fr(fn(y)), fr(fm(y))) ≤ d(fr+n(y), gr+n(x)) + d(gr+n(x), gr+m(x))

+ d(fr+m(y), gr+m(x))

= d(fr+n(y), gr+n(x)) + d(fr+m(y), gr+m(x))

≤ 2ε < e.

The uniform expansivity of x implies fn(y) = fm(y) proving the assertion. It
follows that the map h is well defined. Since

(f ◦ h)(gn(x)) = f(fn(y)) = fn+1(y) = h(gn+1(x))

= h(g(gn(x))) = (h ◦ g)(gn(x))
for all n ∈ Z and

d(h(gn(x)), gn(x)) = d(fn(y), gn(x)) ≤ ϵ for all n ∈ Z,
one would have

f ◦ h = h ◦ g and dC0(h, iOg(x)) ≤ ε.

Let us prove that h is uniformly continuous. Fix ε1 > 0. Since e is a uni-
formly expansive constant of x and X is compact, it follows from Lemma
2.4 that there is N ∈ N such that d(a, b) ≤ δ whenever a, b ∈ U satisfies
d(fn(a), fn(b)) ≤ e for every n with −N ≤ n ≤ N . Since g is continuous and
X is compact, we see that g is uniformly continuous. Hence, there is ρ > 0
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such that d(gn(a), gn(b)) ≤ e
2 for all n with −N ≤ n ≤ N , whenever a, b ∈ U

satisfies d(a, b) ≤ ρ. Now take a, b ∈ Og(x) with d(a, b) ≤ ρ. It follows that

d(fn(h(a)), fn(h(b))) = d(h(gn(a)), h(gn(b))

≤ d(h(gn(a)), gn(a))+d(gn(a), gn(b))+d(h(gn(b)), gn(b))

≤ 2ε+
e

2
< e for all −N ≤ n ≤ N.

By the choice of N we conclude that d(h(a), h(b)) ≤ δ, and so h is uniformly

continuous. Then we can extend h continuously to the orbit closure Og(x) to

obtain a continuous map, still denoted by h : Og(x) → X. Since ε < e, then
dC0(h, iOg(x)) ≤ ε can be extended to dC0(h, i

Og(x)
) ≤ ε. Since ε is arbitrary,

we have x ∈ T(f). So Expu(f) ∩ Sh(f) ⊂ T(f). This completes the proof. □

By Theorem 1.1, we immediately obtain the following result of Corollary
3.16 in [7].

Corollary 2.5. Every shadowable point of an expansive homeomorphism of a
compact metric space is topologically stable.

We recall that a point x ∈ X is periodic if fn(x) = x for some positive integer
n. Moreover, a point x ∈ X is closable (or satisfies the C0-closing lemma) if for
every δ > 0 there is a homeomorphism g : X → X with dC0(f, g) ≤ δ such that
x is a periodic point of g (see [10]). Denote by CL(f) the set of closable points
of f and by Per(f) the set of periodic points of f . Given ε > 0, a finite sequence
{x0, . . . , xk} is an ε-chain from x to y if x0 = x, xk = y and d(f(xn), xn+1) ≤ ε
for every n with 0 ≤ n ≤ k − 1. We say that x ∈ X is chain recurrent if for
every ε there is an ε-chain from x to itself. The set CR(f) of chain recurrent
points of f is called the chain recurrent set.

Corollary 2.6 ([7]). Let f : X → X be a homeomorphism on a compact metric

space X. Then CL(f) ∩ Sh(f) ∩ Expu(f) ⊂ Per(f).

Proof. It follows from Theorem 1.1 that Sh(f)∩Expu(f) ⊂ T (f). Since CL(f)∩
T (f) ⊂ Per(f), it is easy to see that CL(f) ∩ Sh(f) ∩ Expu(f) ⊂ Per(f). □

We say that a homeomorphism f : X → X of a compact metric space X is
pointwise topologically stable if T (f) = X (see [7, Definition 3.3]).

Putting Sh(f) = X and Expu(f) = X in Theorem 1.1, we obtain the point-
wise version of the Walters stability theorem as the following corollary (see
[15, Theorem 4]).

Corollary 2.7. Every expansive homeomorphism with the shadowing property
is pointwise topologically stable.

Proof. Let f : X → X be an expansive homeomorphism with the shadowing
property. We see that Sh(f) = X and Expu(f) = X. Since Expu(f)∩Sh(f) =
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X and Expu(f) ∩ Sh(f) ⊂ T (f) by Theorem 1.1, we obtain

X ⊂ T (f)

and so T (f) = X. Hence f is pointwise topologically stable. □

Remark 2.8. We give the pointwise version concerning the converse of Walters
stability theorem (see [15, Theorem 4]).

(1) Every topologically stable homeomorphism of a compact manifold of
dim ≥ 2 has the shadowing property (see [15, Theorem 11]). Also Aoki
and Hiraide mentioned that Theorem 11 in [15] is also true for the case
where dim = 1 [12].

(2) Every topologically stable point of a homeomorphism of a compact
manifold of dim ≥ 2 is shadowable (see [7, Lemma 3.11]).

(3) Let f : X → X be a homeomorphism of a compact manifold X of
dim(X) ≥ 2. If every point of X is topologically stable, then T (f) = X
and so Sh(f) = X. Furthermore, f has the shadowing property (see
[7, Corollary 3.12]).

Lemma 2.9. Let Sh(f) be a dense subset of X for some f ∈ H(X). Then
f has the shadowing property through Sh(f) if and only if f has the finite
shadowing property through Sh(f).

Proof. Suppose that f has the shadowing property through Sh(f). Let ε > 0
be given and choose δ > 0 such that every δ-pseudo orbit of f through Sh(f)
can be ε-shadowed. Let Γ = {x0, x1, . . . , xm} be a δ-pseudo orbit of f with

x0 ∈ Sh(f). Then the sequence Γ̂ = {yn | n ∈ Z} given by

yn =


fn(x0) if n < 0,

xn if 0 ≤ n ≤ m,

fn(xm) if n ≥ m+ 1,

is a δ-pseudo orbit Γ̂ of f through Sh(f). Since f has the shadowing property
through Sh(f), then there is a point y ∈ X such

d(fn(y), yn) < ε for all n ∈ Z.

Thus every δ-finite pseudo orbit through Sh(f) can be ε-shadowed.
To prove the converse, given ε > 0 and δ > 0 be the corresponding to

definition of the finite shadowing property through Sh(f). Let ξ = {xi}i∈Z be
a δ

2 -pseudo orbit of f through Sh(f). By uniform continuity of f , there exists

η > 0 with η < min{ δ
2 ,

ε
2} such that d(x, y) < η implies d(f(x), f(y)) < δ

2 . Fix

m ∈ N and x′
i = xi−m. Since x−m ∈ Sh(f) = X, there is a point ym ∈ Sh(f)

such that

d(x′
0, ym) = d(x−m, ym) < η.
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Then Γ = {y−m, x−m+1, . . . , x0, x1, . . . , xm} is a finite δ-pseudo orbit of f
through Sh(f) because

d(f(y−m), x−m+1) ≤ d(x−m, f(y−m)) + d(x−m, x−m+1)

<
δ

2
+

δ

2
= δ.

Since f has the finite shadowing property through Sh(f), there is a point
zm ∈ X such that

d(f i(zm), x′
i) < ε for 0 ≤ i ≤ 2m.

Setting wm = fm(ym), then we obtain

d(f i(wm), xi) < ε for −m ≤ i ≤ m.(2.2)

By compactness of X, we can assume that there exists a limit point w of
{wn}n∈N ⊂ X. Passing to the limit as m → ∞ in (2.2), we have that

d(f i(w), xi) ≤ ε for all i ∈ Z.
Thus ξ is 2ε-shadowed by w. Hence f has the shadowing property through
Sh(f). This completes the proof. □

We recall that a point x ∈ X is finitely shadowable of f ∈ H(X) if for every
ε > 0 there is δ > 0 such that for every finite set {x0, x1, . . . , xk} satisfying
x0 = x and d(f(xn), xn+1) < δ for every n with 0 ≤ n ≤ k − 1 there is y ∈ X
such that d(fn(y), xn) < ε for every 0 ≤ n ≤ k − 1.

Lemma 2.10 ([7, Lemma 3.10]). Every finitely shadowable point of a homeo-
morphism of a compact metric space is shadowable.

Lemma 2.11 ([11, Lemma 2.3]). Let f : X → X be a homeomorphism of a
compact metric space X. Then f is the shadowing property through a closed
subset K ⊂ X if and only if K ⊂ Sh(f).

Proposition 2.12. Let f : X → X be a homeomorphism of a compact metric
space X. If Sh(f) is a dense subset of X and f |Sh(f) : Sh(f) → Sh(f) has the
shadowing property on Sh(f), then f also has the shadowing property.

Proof. By assumptions, f |Sh(f) : Sh(f) → Sh(f) has the shadowing property

and X = Sh(f), it follows from [4, Lemma 3.1] that f : X → X has the
shadowing property. □

Proposition 2.13 ([9, Lemma 1]). Let f : X → X be a homeomorphism of a
compact metric space X. Suppose that there is a sequence of positive numbers
(δk)k∈N such that every δk-pseudo orbit through Sh(f) can be 1

k -shadowed for
every k ∈ N. Then f |Sh(f) : Sh(f) → Sh(f) has the shadowing property.

Proof. It follows from [9, Lemma 1] that Sh(f) is a closed subset of a compact
metric spaceX and so a compact subspace ofX. Hence f |Sh(f) : Sh(f) → Sh(f)
has the shadowing property by Lemma 2.11. □
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We recall that a homeomorphism f : X → X of a compact metric space
X has the almost shadowing property if Sh(f) is dense in X (see [11]). From
Lemma 2.3, we obtain the following.

Proposition 2.14 ([8, Theorem 1.1]). Let X and Y be compact metric spaces
with metrics d and d′, respectively. If two homeomorphisms f : X → X and
g : Y → Y are topologically conjugated, then f has the almost shadowing
property if and only if so is g.

For the proof of Theorem 1.2, we need the following lemmas.

Lemma 2.15 ([3, Lemma 8]). Let {fn}n∈N be a sequence of H(X) which
converges uniformly to f ∈ H(X). If {fn}n∈N has the uniform shadowing
property, then f has the shadowing property.

Lemma 2.16. Let {fn}n∈N be a sequence of H(X) which converges uniformly
to f ∈ H(X). If {fn}n∈N is uniformly expansive with the expansive constants
en = e for each n ∈ N, then the limit f is expansive with the expansive constant
e
3 .

Proof. Fix e > 0. Since {fn}n∈N converges uniformly to f , there exists N0 ∈ N
such that d(fn(x), f(x)) <

e
3 for every x ∈ X and each n ≥ N0. Note that if

{fn}n∈N converges to f , then {f i
n}n∈N converges to f i for each i ∈ N. On the

other hand, each f i is homeomorphic for all i ∈ N. Taking n = N0 sufficiently
large, we obtain

d(f i(y), f i
N0

(y)) <
e

3
for all i ∈ N.

We claim that there exists an expansive constant e
3 such that for each pair

x, y ∈ X satisfying d(fn(x), fn(y)) ≤ e
3 for each n ∈ Z we have x = y. In fact,

we have

d(fn
N0

(x), fn
N0

(y)) ≤ d(fn
N0

(x), fn(x)) + d(fn(x), fn(y)) + d(fn(y), fn
N0

(y))

≤ e for every n ∈ Z.

Thus we obtain

d(fn
N0

(x), fn
N0

(y)) ≤ e for every n ∈ Z.

From the expansivity of fN0
, we obtain x = y. Hence the limit f is expansive.

This completes the proof. □

For the proof of Theorem 1.2, we also need well-known Walters stability
theorem (see [15]). Now we give a proof of Theorem 1.2.

Proof of Theorem 1.2. Suppose that a sequence {fn}n∈N is uniformly expan-
sive with the uniform shadowing property. From Lemma 2.15, the limit f :
X → X has the shadowing property. Also, it follows from Lemma 2.16 that f
is expansive, so f is topologically stable by Theorem 4 in [15]. This completes
the proof. □



TOPOLOGICALLY STABLE POINTS AND UNIFORM LIMITS 1053

Corollary 2.17. Under the assumptions of Theorem 1.2, the following prop-
erties hold for each f ∈ H(X).

(1) CR(f) = Ω(f) = Per(f), where Ω(f) is the nonwandering set (see
[1, p. 92]).

(2) The limit f : X → X is pointwise topologically stable.

Proof. The proof of (1) immediately follows from [1, Theorem 3.1.8]. From
Theorem 1.2 and Corollary 2.7, we also can verify that (2) holds. □

3. Examples

In this section we give some examples related our main results and their key
notions.

First we give an example that there are a compact metric space X and a
homeomorphism f : X → X such that Sh(f) is a nonempty noncompact subset
of X.

Example 3.1 ([11, Example 2.1]). Let X = C ∪ [1, 2] be the compact metric
subspace of R, where C is the ternary Cantor set of [0, 1]. Take f : X → X as
the identity map of X. Then we obtain that Sh(f) = C \ {1} is a non-empty
and non-compact subset of X.

Next the following example shows that the set of topologically stable points
of a homeomorphism need not be closed in general.

Example 3.2 ([7, Example 2.7]). Let X = S(1) ∪ (∪n∈NS(1 + ( 1n ))) be the

compact metric space of the Euclidean space R2, where S(r) is a circle of radius
r of R2 centered at (0, 0). Define a map f : X → X by setting fn = f |S(1+( 1

n ))

be a Morse-Smale diffeomorphism with 2+4(n−1) alternating hyperbolic fixed
points and f |S(1) = iS(1). Then we can see that f is a homeomorphism and a

proper subset T(f) = ∪n∈NS(1 + ( 1n )) of X is not closed.

Also, we give an example to explain some properties about the set of uni-
formly expansive points of homeomorphisms.

Example 3.3. Let S1 be the circle of the Euclidean space R2 with metric
d1 and f : S1 → S1 be a homeomorphism with a fixed point p ∈ S1 in
Figure 1. Since there are no expansive homeomorphisms on S1, we see that
Expu(f) ̸= S1 and moreover Expu(f) = ∅. Let (Σ2 = {0, 1}Z, σ) be the shift
system with metric d2 and X = S1 ∪Σ2 be the compact metric space with the
metric ρ given by

ρ(x, y) =


d1(x, y) if x, y ∈ S1,

d2(x, y) if x, y ∈ Σ2,

k if x ∈ S1, y ∈ Σ2,
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where k ≥ 3. Define a homeomorphism g : X → X by

g(x) =

{
f(x) if x ∈ S1,

σ(x) if x ∈ Σ2.

Then the homeomorphism g is not expansive. Thus we have ∅ ≠ Expu(g) = Σ2.

p

Figure 1. Dynamics of a homeomorphism f on S1

The one-point compactification of a locally compact Hausdorff space satis-
fying an expansive homeomorphism may not admit an expansive homeomor-
phism.

Example 3.4. Note that a homeomorphism f : R → R given by f(x) = 2x is
expansive. Since R is a locally compact Hausdorff space, we see that there is a
one-point compactification R∞ = R∪{∞} of R that is a compact metric space
and homeomorphic to the circle S1. Define a homeomorphism g : R∞ → R∞
by

g(x) =

{
x if x = ∞,

f(x) otherwise.

Then we see that Expu(f) = R. Since Expu(f) is a dense subset of S1 and
there are no expansive homeomorphisms on the circle, thus the homeomorphism
g : R∞ → R∞ is not expansive. We remark that though the notion of metrics is
a topological property, the expansivity may not be preserved by the equivalent
metrics.
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[13] S. Y. Pilyugin, Shadowing in dynamical systems, Lecture Notes in Mathematics, 1706,
Springer, Berlin, 1999.

[14] W. R. Utz, Unstable homeomorphisms, Proc. Amer. Math. Soc. 1 (1950), 769–774.
https://doi.org/10.2307/2031982

[15] P. Walters, On the pseudo-orbit tracing property and its relationship to stability, in The

structure of attractors in dynamical systems (Proc. Conf., North Dakota State Univ.,
Fargo, N.D., 1977), 231–244, Lecture Notes in Math., 668, Springer, Berlin, 1978.

Namjip Koo

Department of Mathematics

Chungnam National University
Daejeon 34134, Korea

Email address: njkoo@cnu.ac.kr

Hyunhee Lee

Department of Mathematics

Chungnam National University
Daejeon 34134, Korea

Email address: avechee@cnu.ac.kr

https://doi.org/10.1007/s10883-017-9381-8
https://doi.org/10.1090/proc/14682
https://doi.org/10.4064/fm136-2-2016
https://doi.org/10.1080/14689367.2017.1280664
https://doi.org/10.1016/j.topol.2022.108218
https://doi.org/10.1017/s0013091518000263
https://doi.org/10.1017/s0013091518000263
https://doi.org/10.20537/nd220210
https://doi.org/10.1080/14689367.2015.1131813
https://doi.org/10.1080/14689367.2015.1131813
https://doi.org/10.2307/2031982

