References
- A. Arbieto, Peirodic orbits and expansiveness, Math. Z. 269 (2011), 801-807. https://doi.org/10.1007/s00209-010-0767-5
- A. Arbieto, W. Cordeiro and M. J. Pacifico, Continuum-wise expansivity and entropy for flows, to appear in Ergodic Theory Dynam. Systems.
- S. Bautista, The geometric Lorenz attractor is a homoclinic class, Bol. Mat. 11 (2004), 69-78.
- P. Bergera and A. Bounemourab, A geometrical proof of the persistence of normally hyperbolic submanifolds, Dynam. Syst. 28(2013), 567-581. https://doi.org/10.1080/14689367.2013.835386
- M. Bessa, A generic incompressible flow is topological mixing, C. R. Math. Acad. Sci. Paris 346 (2008), 1169-1174. https://doi.org/10.1016/j.crma.2008.07.012
- M. Bessa, M. Lee and X. Wen, Shadowing, expansiveness and specification for C1-conservative systems, Acta Math. Sci. 35 (2015), 583-600. https://doi.org/10.1016/S0252-9602(15)30005-9
- C. Bonatti and S. Crovisier, Recurrence et genericite, Invent. Math. 158 (2004), 180-193.
- R. Bowen and P. Walters, Expansive one-parameter flows, J. Diff. Eqns. 12 (1972), 180-193. https://doi.org/10.1016/0022-0396(72)90013-7
- T. Das, K. Lee and M. Lee, C1-persistently continuum-wise expansive homoclinic classes and recurrent sets, Topol. Its Appl. 160 (2013), 350-359. https://doi.org/10.1016/j.topol.2012.11.013
- C. Ferreira, Shadowing, expansiveness and stability of divergence-free vector fields, Bull. Korean Math. Soc. 51 (2014), no. 1, 67-76. https://doi.org/10.4134/BKMS.2014.51.1.067
- S. Gan and L. Wen, Nonsingular star flows satisfy Axiom A and the no-cycle condition, Invent. Math. 164 (2006), no. 2, 279-315. https://doi.org/10.1007/s00222-005-0479-3
- M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin, 1977.
- H. Kato, Continuum-wise expansive homeomorphisms, Canad. J. Math. 45 (1993), no. 3, 576-598. https://doi.org/10.4153/CJM-1993-030-4
- M. Komuro, Expansive properties of Lorenz attractors, in The theory of dynamical systems and its applications to nonlinear problems (Kyoto, 1984), 4-26, World Sci. Publishing, Singapore, 1984.
- N. Koo, K. Lee, and M. Lee, Generic diffeomorphisms with measure-expansive homoclinic classes, J. Difference Equ. Appl. 20 (2014), no. 2, 228-236. https://doi.org/10.1080/10236198.2013.829053
- I. Kupka, Contribution a la theorie des champs generiques, Contributions to Differential Equations 2 (1963), 457-484.
- M. Lee, Measure expansive homoclinic classes for generic diffeomorphisms, Appl. Math. Sci. 73 (2015), 3623-3628.
- M. Lee, Continuum-wise expansiveness for non-conservative or conservative systems, Chaos Solitons & Fractals 87 (2016), 314-318. https://doi.org/10.1016/j.chaos.2016.04.019
- M. Lee, Continuum-wise expansive homoclinic classes for generic diffeomorphisms, Publ. Math. Debrecen 88 (2016), no. 1-2, 193-200. https://doi.org/10.5486/PMD.2016.7327
- M. Lee, Continuum-wise expansiveness for generic diffeomorphisms, Nonlinearity 31 (2018), no. 6, 2982-2988. https://doi.org/10.1088/1361-6544/aaba38
- M. Lee, Measure expansive homoclinic classes for C1 generic vector fields, Mathematics 8 (2020), 1232.
- K. Lee and M. Lee, Hyperbolicity of C1-stably expansive homoclinic classes, Discrete Contin. Dyn. Syst. 27 (2010), no. 3, 1133-1145. https://doi.org/10.3934/dcds.2010.27.1133
- K. Lee and M. Lee, Measure-expansive homoclinic classes, Osaka J. Math. 53 (2016), no. 4, 873-887. http://projecteuclid.org/euclid.ojm/1475601821
- M. Lee and J. Oh, Measure expansive flows for the generic view point, J. Difference Equ. Appl. 22 (2016), no. 7, 1005-1018. https://doi.org/10.1080/10236198.2016.1172573
- S. Lee and J. Park, Expansive homoclinic classes of generic C1-vector fields, Acta Math. Sin. (Engl. Ser.) 32 (2016), no. 12, 1451-1458. https://doi.org/10.1007/s10114-016-5207-y
- R. Mane, Expansive diffeomorphisms, in Dynamical systems-Warwick 1974 (Proc. Sympos. Appl. Topology and Dynamical Systems, Univ. Warwick, Coventry, 1973/1974; presented to E. C. Zeeman on his fiftieth birthday), 162-174, Lecture Notes in Math., Vol. 468, Springer, Berlin, 1975.
- K. Moriyasu, K. Sakai, and N. Sumi, Vector fields with topological stability, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3391-3408. https://doi.org/10.1090/S0002-9947-01-02748-9
- K. Moriyasu, K. Sakai, and W. Sun, C1-stably expansive flows, J. Differential Equations 213 (2005), no. 2, 352-367. https://doi.org/10.1016/j.jde.2004.08.003
- M. Oka, Expansiveness of real flows, Tsukuba J. Math. 14 (1990), no. 1, 1-8. https://doi.org/10.21099/tkbjm/1496161314
- M. J. Pacifico, E. R. Pujals, M. Sambarino, and J. L. Vieitez, Robustly expansive codimension-one homoclinic classes are hyperbolic, Ergodic Theory Dynam. Systems 29 (2009), no. 1, 179-200. https://doi.org/10.1017/S0143385708000175
- M. J. Pacifico, E. R. Pujals, and J. L. Vieitez, Robustly expansive homoclinic classes, Ergodic Theory Dynam. Systems 25 (2005), no. 1, 271-300. https://doi.org/10.1017/S0143385704000203
- K. Sakai, Continuum-wise expansive diffeomorphisms, Publ. Mat. 41 (1997), no. 2, 375-382. https://doi.org/10.5565/PUBLMAT_41297_04
- M. Sambarino and J. L. Vieitez, On C1-persistently expansive homoclinic classes, Discrete Contin. Dyn. Syst. 14 (2006), no. 3, 465-481. https://doi.org/10.3934/dcds.2006.14.465
- M. Sambarino and J. L. Vieitez, Robustly expansive homoclinic classes are generically hyperbolic, Discrete Contin. Dyn. Syst. 24 (2009), no. 4, 1325-1333. https://doi.org/10.3934/dcds.2009.24.1325
- L. Senos, Generic Bowen-expansive flows, Bull. Braz. Math. Soc. (N.S.) 43 (2012), no. 1, 59-71. https://doi.org/10.1007/s00574-012-0005-3
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. https://doi.org/10.1090/S0002-9904-1967-11798-1
- W. R. Utz, Unstable homeomorphisms, Proc. Amer. Math. Soc. 1 (1950), 769-774. https://doi.org/10.2307/2031982
- X. Wang, Hyperbolicity versus weak periodic orbits inside homoclinic classes, Ergodic Theory Dynam. Systems 38 (2018), no. 6, 2345-2400. https://doi.org/10.1017/etds.2016.122
- D. Yang and S. Gan, Expansive homoclinic classes, Nonlinearity 22 (2009), no. 4, 729-733. https://doi.org/10.1088/0951-7715/22/4/002