DOI QR코드

DOI QR Code

CONTINUUM-WISE EXPANSIVENESS FOR C1 GENERIC VECTOR FIELDS

  • Manseob Lee (Department of Marketing Big Data Mokwon University)
  • Received : 2022.07.15
  • Accepted : 2022.12.01
  • Published : 2023.09.01

Abstract

It is shown that every continuum-wise expansive C1 generic vector field X on a compact connected smooth manifold M satisfies Axiom A and has no cycles, and every continuum-wise expansive homoclinic class of a C1 generic vector field X on a compact connected smooth manifold M is hyperbolic. Moreover, every continuum-wise expansive C1 generic divergence-free vector field X on a compact connected smooth manifold M is Anosov.

Keywords

References

  1. A. Arbieto, Peirodic orbits and expansiveness, Math. Z. 269 (2011), 801-807. https://doi.org/10.1007/s00209-010-0767-5
  2. A. Arbieto, W. Cordeiro and M. J. Pacifico, Continuum-wise expansivity and entropy for flows, to appear in Ergodic Theory Dynam. Systems.
  3. S. Bautista, The geometric Lorenz attractor is a homoclinic class, Bol. Mat. 11 (2004), 69-78.
  4. P. Bergera and A. Bounemourab, A geometrical proof of the persistence of normally hyperbolic submanifolds, Dynam. Syst. 28(2013), 567-581. https://doi.org/10.1080/14689367.2013.835386
  5. M. Bessa, A generic incompressible flow is topological mixing, C. R. Math. Acad. Sci. Paris 346 (2008), 1169-1174. https://doi.org/10.1016/j.crma.2008.07.012
  6. M. Bessa, M. Lee and X. Wen, Shadowing, expansiveness and specification for C1-conservative systems, Acta Math. Sci. 35 (2015), 583-600. https://doi.org/10.1016/S0252-9602(15)30005-9
  7. C. Bonatti and S. Crovisier, Recurrence et genericite, Invent. Math. 158 (2004), 180-193.
  8. R. Bowen and P. Walters, Expansive one-parameter flows, J. Diff. Eqns. 12 (1972), 180-193. https://doi.org/10.1016/0022-0396(72)90013-7
  9. T. Das, K. Lee and M. Lee, C1-persistently continuum-wise expansive homoclinic classes and recurrent sets, Topol. Its Appl. 160 (2013), 350-359. https://doi.org/10.1016/j.topol.2012.11.013
  10. C. Ferreira, Shadowing, expansiveness and stability of divergence-free vector fields, Bull. Korean Math. Soc. 51 (2014), no. 1, 67-76. https://doi.org/10.4134/BKMS.2014.51.1.067
  11. S. Gan and L. Wen, Nonsingular star flows satisfy Axiom A and the no-cycle condition, Invent. Math. 164 (2006), no. 2, 279-315. https://doi.org/10.1007/s00222-005-0479-3
  12. M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin, 1977.
  13. H. Kato, Continuum-wise expansive homeomorphisms, Canad. J. Math. 45 (1993), no. 3, 576-598. https://doi.org/10.4153/CJM-1993-030-4
  14. M. Komuro, Expansive properties of Lorenz attractors, in The theory of dynamical systems and its applications to nonlinear problems (Kyoto, 1984), 4-26, World Sci. Publishing, Singapore, 1984.
  15. N. Koo, K. Lee, and M. Lee, Generic diffeomorphisms with measure-expansive homoclinic classes, J. Difference Equ. Appl. 20 (2014), no. 2, 228-236. https://doi.org/10.1080/10236198.2013.829053
  16. I. Kupka, Contribution a la theorie des champs generiques, Contributions to Differential Equations 2 (1963), 457-484.
  17. M. Lee, Measure expansive homoclinic classes for generic diffeomorphisms, Appl. Math. Sci. 73 (2015), 3623-3628.
  18. M. Lee, Continuum-wise expansiveness for non-conservative or conservative systems, Chaos Solitons & Fractals 87 (2016), 314-318. https://doi.org/10.1016/j.chaos.2016.04.019
  19. M. Lee, Continuum-wise expansive homoclinic classes for generic diffeomorphisms, Publ. Math. Debrecen 88 (2016), no. 1-2, 193-200. https://doi.org/10.5486/PMD.2016.7327
  20. M. Lee, Continuum-wise expansiveness for generic diffeomorphisms, Nonlinearity 31 (2018), no. 6, 2982-2988. https://doi.org/10.1088/1361-6544/aaba38
  21. M. Lee, Measure expansive homoclinic classes for C1 generic vector fields, Mathematics 8 (2020), 1232.
  22. K. Lee and M. Lee, Hyperbolicity of C1-stably expansive homoclinic classes, Discrete Contin. Dyn. Syst. 27 (2010), no. 3, 1133-1145. https://doi.org/10.3934/dcds.2010.27.1133
  23. K. Lee and M. Lee, Measure-expansive homoclinic classes, Osaka J. Math. 53 (2016), no. 4, 873-887. http://projecteuclid.org/euclid.ojm/1475601821
  24. M. Lee and J. Oh, Measure expansive flows for the generic view point, J. Difference Equ. Appl. 22 (2016), no. 7, 1005-1018. https://doi.org/10.1080/10236198.2016.1172573
  25. S. Lee and J. Park, Expansive homoclinic classes of generic C1-vector fields, Acta Math. Sin. (Engl. Ser.) 32 (2016), no. 12, 1451-1458. https://doi.org/10.1007/s10114-016-5207-y
  26. R. Mane, Expansive diffeomorphisms, in Dynamical systems-Warwick 1974 (Proc. Sympos. Appl. Topology and Dynamical Systems, Univ. Warwick, Coventry, 1973/1974; presented to E. C. Zeeman on his fiftieth birthday), 162-174, Lecture Notes in Math., Vol. 468, Springer, Berlin, 1975.
  27. K. Moriyasu, K. Sakai, and N. Sumi, Vector fields with topological stability, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3391-3408. https://doi.org/10.1090/S0002-9947-01-02748-9
  28. K. Moriyasu, K. Sakai, and W. Sun, C1-stably expansive flows, J. Differential Equations 213 (2005), no. 2, 352-367. https://doi.org/10.1016/j.jde.2004.08.003
  29. M. Oka, Expansiveness of real flows, Tsukuba J. Math. 14 (1990), no. 1, 1-8. https://doi.org/10.21099/tkbjm/1496161314
  30. M. J. Pacifico, E. R. Pujals, M. Sambarino, and J. L. Vieitez, Robustly expansive codimension-one homoclinic classes are hyperbolic, Ergodic Theory Dynam. Systems 29 (2009), no. 1, 179-200. https://doi.org/10.1017/S0143385708000175
  31. M. J. Pacifico, E. R. Pujals, and J. L. Vieitez, Robustly expansive homoclinic classes, Ergodic Theory Dynam. Systems 25 (2005), no. 1, 271-300. https://doi.org/10.1017/S0143385704000203
  32. K. Sakai, Continuum-wise expansive diffeomorphisms, Publ. Mat. 41 (1997), no. 2, 375-382. https://doi.org/10.5565/PUBLMAT_41297_04
  33. M. Sambarino and J. L. Vieitez, On C1-persistently expansive homoclinic classes, Discrete Contin. Dyn. Syst. 14 (2006), no. 3, 465-481. https://doi.org/10.3934/dcds.2006.14.465
  34. M. Sambarino and J. L. Vieitez, Robustly expansive homoclinic classes are generically hyperbolic, Discrete Contin. Dyn. Syst. 24 (2009), no. 4, 1325-1333. https://doi.org/10.3934/dcds.2009.24.1325
  35. L. Senos, Generic Bowen-expansive flows, Bull. Braz. Math. Soc. (N.S.) 43 (2012), no. 1, 59-71. https://doi.org/10.1007/s00574-012-0005-3
  36. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. https://doi.org/10.1090/S0002-9904-1967-11798-1
  37. W. R. Utz, Unstable homeomorphisms, Proc. Amer. Math. Soc. 1 (1950), 769-774. https://doi.org/10.2307/2031982
  38. X. Wang, Hyperbolicity versus weak periodic orbits inside homoclinic classes, Ergodic Theory Dynam. Systems 38 (2018), no. 6, 2345-2400. https://doi.org/10.1017/etds.2016.122
  39. D. Yang and S. Gan, Expansive homoclinic classes, Nonlinearity 22 (2009), no. 4, 729-733. https://doi.org/10.1088/0951-7715/22/4/002