References
- M. Bhargava, On the Conway-Schneeberger fifteen theorem, in Quadratic forms and their applications (Dublin, 1999), 27-37, Contemp. Math., 272, Amer. Math. Soc., Providence, RI, 2000. https://doi.org/10.1090/conm/272/04395
- M. Bhargava and J. Hanke, Universal quadratic forms and the 290 theorem, preprint.
- J. Bochnak and B.-K. Oh, Almost-universal quadratic forms: an effective solution of a problem of Ramanujan, Duke Math. J. 147 (2009), no. 1, 131-156. https://doi.org/10.1215/00127094-2009-008
- W. Bosma and B. Kane, The triangular theorem of eight and representation by quadratic polynomials, Proc. Amer. Math. Soc. 141 (2013), no. 5, 1473-1486. https://doi.org/10.1090/S0002-9939-2012-11419-4
- L. E. Dickson, Quaternary quadratic forms representing all integers, Amer. J. Math. 49 (1927), no. 1, 39-56. https://doi.org/10.2307/2370770
- P. R. Halmos, Note on almost-universal forms, Bull. Amer. Math. Soc. 44 (1938), no. 2, 141-144. https://doi.org/10.1090/S0002-9904-1938-06709-2
- J. Ju, Ternary quadratic forms representing the same integers, Int. J. Number Theory 18 (2022), no. 9, 1921-1928. https://doi.org/10.1142/S1793042122500981
- J. Ju and B.-K. Oh, Universal mixed sums of generalized 4- and 8-gonal numbers, Int. J. Number Theory 16 (2020), no. 3, 603-627. https://doi.org/10.1142/S179304212050030X
- J. Ju, B.-K. Oh, and B. Seo, Ternary universal sums of generalized polygonal numbers, Int. J. Number Theory 15 (2019), no. 4, 655-675. https://doi.org/10.1142/S1793042119500350
- B. Kane, Representing sets with sums of triangular numbers, Int. Math. Res. Not. IMRN 2009 (2009), no. 17, 3264-3285. https://doi.org/10.1093/imrn/rnp053
- B.-K. Oh, Regular positive ternary quadratic forms, Acta Arith. 147 (2011), no. 3, 233-243. https://doi.org/10.4064/aa147-3-3
- B.-K. Oh, Ternary universal sums of generalized pentagonal numbers, J. Korean Math. Soc. 48 (2011), no. 4, 837-847. https://doi.org/10.4134/JKMS.2011.48.4.837
- O. T. O'Meara, Introduction to quadratic forms, Die Grundlehren der mathematischen Wissenschaften, Band 117, Academic Press, Inc., Publishers, New York, 1963.
- G. Pall, An almost universal form, Bull. Amer. Math. Soc. 46 (1940), 291. https://doi.org/10.1090/S0002-9904-1940-07200-3
- S. Ramanujan, On the expression of a number in the form ax2 + by2 + cz2 + du2, Proc. Camb. Phil. Soc. 19 (1916), 11-21.
- R. Schulze-Pillot, Darstellung durch Spinorgeschlechter ternarer quadratischer Formen, J. Number Theory 12 (1980), no. 4, 529-540. https://doi.org/10.1016/0022-314X(80)90043-8