DOI QR코드

DOI QR Code

ALMOST UNIVERSAL SUMS OF TRIANGULAR NUMBERS WITH ONE EXCEPTION

  • Jangwon Ju (Department of Mathematics Education Korea National University of Education)
  • Received : 2022.05.11
  • Accepted : 2023.05.12
  • Published : 2023.09.01

Abstract

For an arbitrary integer x, an integer of the form $$T(x)={\frac{x^2+x}{2}}$$ is called a triangular number. Let α1, ... , αk be positive integers. A sum ${\Delta}_{{\alpha}_1,{\ldots},{\alpha}_k}(x_1,\,{\ldots},\,x_k)=\{\alpha}_1T(x_1)+\,{\cdots}\,+{\alpha}_kT(x_k)$ of triangular numbers is said to be almost universal with one exception if the Diophantine equation ${\Delta}_{{\alpha}_1,{\ldots},{\alpha}_k}(x_1,\,{\ldots},\,x_k)=n$ has an integer solution (x1, ... , xk) ∊ ℤk for any nonnegative integer n except a single one. In this article, we classify all almost universal sums of triangular numbers with one exception. Furthermore, we provide an effective criterion on almost universality with one exception of an arbitrary sum of triangular numbers, which is a generalization of "15-theorem" of Conway, Miller, and Schneeberger.

Keywords

References

  1. M. Bhargava, On the Conway-Schneeberger fifteen theorem, in Quadratic forms and their applications (Dublin, 1999), 27-37, Contemp. Math., 272, Amer. Math. Soc., Providence, RI, 2000. https://doi.org/10.1090/conm/272/04395 
  2. M. Bhargava and J. Hanke, Universal quadratic forms and the 290 theorem, preprint. 
  3. J. Bochnak and B.-K. Oh, Almost-universal quadratic forms: an effective solution of a problem of Ramanujan, Duke Math. J. 147 (2009), no. 1, 131-156. https://doi.org/10.1215/00127094-2009-008 
  4. W. Bosma and B. Kane, The triangular theorem of eight and representation by quadratic polynomials, Proc. Amer. Math. Soc. 141 (2013), no. 5, 1473-1486. https://doi.org/10.1090/S0002-9939-2012-11419-4 
  5. L. E. Dickson, Quaternary quadratic forms representing all integers, Amer. J. Math. 49 (1927), no. 1, 39-56. https://doi.org/10.2307/2370770 
  6. P. R. Halmos, Note on almost-universal forms, Bull. Amer. Math. Soc. 44 (1938), no. 2, 141-144. https://doi.org/10.1090/S0002-9904-1938-06709-2 
  7. J. Ju, Ternary quadratic forms representing the same integers, Int. J. Number Theory 18 (2022), no. 9, 1921-1928. https://doi.org/10.1142/S1793042122500981 
  8. J. Ju and B.-K. Oh, Universal mixed sums of generalized 4- and 8-gonal numbers, Int. J. Number Theory 16 (2020), no. 3, 603-627. https://doi.org/10.1142/S179304212050030X 
  9. J. Ju, B.-K. Oh, and B. Seo, Ternary universal sums of generalized polygonal numbers, Int. J. Number Theory 15 (2019), no. 4, 655-675. https://doi.org/10.1142/S1793042119500350 
  10. B. Kane, Representing sets with sums of triangular numbers, Int. Math. Res. Not. IMRN 2009 (2009), no. 17, 3264-3285. https://doi.org/10.1093/imrn/rnp053 
  11. B.-K. Oh, Regular positive ternary quadratic forms, Acta Arith. 147 (2011), no. 3, 233-243. https://doi.org/10.4064/aa147-3-3 
  12. B.-K. Oh, Ternary universal sums of generalized pentagonal numbers, J. Korean Math. Soc. 48 (2011), no. 4, 837-847. https://doi.org/10.4134/JKMS.2011.48.4.837 
  13. O. T. O'Meara, Introduction to quadratic forms, Die Grundlehren der mathematischen Wissenschaften, Band 117, Academic Press, Inc., Publishers, New York, 1963. 
  14. G. Pall, An almost universal form, Bull. Amer. Math. Soc. 46 (1940), 291. https://doi.org/10.1090/S0002-9904-1940-07200-3 
  15. S. Ramanujan, On the expression of a number in the form ax2 + by2 + cz2 + du2, Proc. Camb. Phil. Soc. 19 (1916), 11-21. 
  16. R. Schulze-Pillot, Darstellung durch Spinorgeschlechter ternarer quadratischer Formen, J. Number Theory 12 (1980), no. 4, 529-540. https://doi.org/10.1016/0022-314X(80)90043-8