DOI QR코드

DOI QR Code

Enhancing Electrical Properties of N-type Bismuth Telluride Alloys through Graphene Oxide Incorporation in Extrusion 3D Printing

  • Jinhee Bae (Department of 3D Printing Materials, Powder Materials Division, Korea Institute of Materials Science (KIMS)) ;
  • Seungki Jo (Department of 3D Printing Materials, Powder Materials Division, Korea Institute of Materials Science (KIMS)) ;
  • Kyung Tae Kim (Department of 3D Printing Materials, Powder Materials Division, Korea Institute of Materials Science (KIMS))
  • Received : 2023.06.16
  • Accepted : 2023.07.08
  • Published : 2023.08.28

Abstract

The thermoelectric effect, which converts waste heat into electricity, holds promise as a renewable energy technology. Recently, bismuth telluride (Bi2Te3)-based alloys are being recognized as important materials for practical applications in the temperature range from room temperature to 500 K. However, conventional sintering processes impose limitations on shape-changeable and tailorable Bi2Te3 materials. To overcome these issues, three-dimensional (3D) printing (additive manufacturing) is being adopted. Although some research results have been reported, relatively few studies on 3D printed thermoelectric materials are being carried out. In this study, we utilize extrusion 3D printing to manufacture n-type Bi1.7Sb0.3Te3 (N-BST). The ink is produced without using organic binders, which could negatively influence its thermoelectric properties. Furthermore, we introduce graphene oxide (GO) at the crystal interface to enhance the electrical properties. The formed N-BST composites exhibit significantly improved electrical conductivity and a higher Seebeck coefficient as the GO content increases. Therefore, we propose that the combination of the extrusion 3D printing process (Direct Ink Writing, DIW) and the incorporation of GO into N-BST offers a convenient and effective approach for achieving higher thermoelectric efficiency.

Keywords

Acknowledgement

We gratefully acknowledge support for this study from the Korea Institute of Materials Science's main project (assignment number: PNK8960) and material-modified metainterfacial thermoelectric material technology (assignment contract number 2021M3C1C309754021).

References

  1. G. J. Snyder and E. S. Toberer: Nat. Mater., 7 (2008) 105. 
  2. L. E. Bell: Science, 321 (2008) 1457. 
  3. M. Hamid Elsheikh, D. A. Shnawah, M. F. M. Sabri, S. B. M. Said, M. H. Hassan, M. B. A. Bashir and M. Mohamad: Renewable Sustainable Energy Rev., 30 (2014) 337. 
  4. X.-L. Shi, J. Zou and Z.-G. Chen: Chem. Rev., 120 (2020) 7399. 
  5. D. Liu, D. Wang, T. Hong, Z. Wang, Y. Wang, Y. Qin, L. Su, T. Yang, X. Gao, Z. Ge, B. Qin and L.-D. Zhao: Science, 380 (2023) 841. 
  6. S. Shoeibi, H. Kargarsharifabad, M. Sadi, A. Arabkoohsar and S. A. A. Mirjalily: Sustain. Energy Technol. Assess, 52 (2022) 102105. 
  7. Y. Lan, A. J. Minnich, G. Chen and Z. Ren: Adv. Funct. Mater., 20 (2010) 357. 
  8. K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid and M. G. Kanatzidis: Nature, 489 (2012) 414. 
  9. S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder and S. W. Kim: Science, 348 (2015) 109. 
  10. K. T. Kim, T. Min and D. W. Kim: J. Powder Mater., 23 (2016) 263. 
  11. E.-Y. Jun, H.-Y. Kim, C. Kim, K.-S. Oh and T.-J. Chung: J. Powder Mater., 25 (2018) 384. 
  12. O. Meroz, N. Elkabets and Y. Gelbstein: ACS Applied Energy Materials, 3 (2020) 2090. 
  13. M. J. Jung, J. Y. Park, S. M. Eun and B. J. Choi: J. Powder Mater., 30 (2023) 130. 
  14. S.-H. Jung, Y. J. Woo, K. T. Kim and S. Jo: J. Powder Mater., 30 (2023) 123. 
  15. T.-L. Chen, C. Luo, Y.-G. Yan, J.-H. Yang, Q.-J. Zhang, C. Uher and X.-F. Tang: Rare Met., 37 (2018) 300. 
  16. J. Shi, H. Chen, S. Jia and W. Wang: J. Manuf. Process, 37 (2019) 370. 
  17. M. M. Mallick, L. Franke, A. G. Rosch and U. Lemmer: ACS Energy Lett., 6 (2021) 85. 
  18. D. Zhang, W. Y. S. Lim, S. S. F. Duran, X. J. Loh and A. Suwardi: ACS Energy Lett., 7 (2022) 720. 
  19. S. Zhang, Y. Liu, J. Hao, G. G. Wallace, S. Beirne and J. Chen: Adv. Funct. Mater., 32 (2022) 2103092. 
  20. Q. Hu, D. Luo, J. Guo, W. Qiu, X. Wu, L. Yang, Z. Wang, X. Cui and J. Tang: ACS Appl. Mater., 15 (2023) 1296.  https://doi.org/10.1021/acsami.2c19131
  21. F. Kim, B. Kwon, Y. Eom, J. E. Lee, S. Park, S. Jo, S. H. Park, B.-S. Kim, H. J. Im, M. H. Lee, T. S. Min, K. T. Kim, H. G. Chae, W. P. King and J. S. Son: Nat. Energy, 3 (2018) 301.  https://doi.org/10.1038/s41560-017-0071-2
  22. Y. Eom, F. Kim, S. E. Yang, J. S. Son and H. G. Chae: J. Rheol., 63 (2019) 291. 
  23. J. Lee, S. Choo, H. Ju, J. Hong, S. E. Yang, F. Kim, D. H. Gu, J. Jang, G. Kim, S. Ahn, J. E. Lee, S. Y. Kim, H. G. Chae and J. S. Son: Adv. Energy Mater., 11 (2021) 2100190. 
  24. Y. M. Cho, K. T. Kim, G. S. Lee and S. H. Kim: Appl. Surf. Sci., 476 (2019) 533. 
  25. S.-H. Jung, K. T. Kim, G.-S. Lee, J.-Y. Sun, D. W. Kim, Y. S. Eom, D. Y. Yang, J. Yu, J. M. Park, D. Y. Hyeon and K.-I. Park: ACS Appl. Mater., 13 (2021) 5125. https://doi.org/10.1021/acsami.0c20509