과제정보
본 연구는 과학기술정보통신부 및 정보통신기획평가원의 대학 ICT 연구센터지원사업의 연구 결과로 수행되었음(IITP-2023-2018-0-01799).
참고문헌
- N. Quader, M. O. Gani, D. Chaki, and M. H. Ali, "A machine learning approach to predict movie box-office success," in Proc. of the 2017 20th International Conference of Computer and Information Technology (ICCIT), pp. 1-7, IEEE, Dec. 2017.
- J. H. Byun, J. H. Kim, Y. J. Choi, and H. C. Lee, "Movie Box-office Prediction using Deep Learning and Feature Selection: Focusing on Multivariate Time Series," Journal of The Korea Society of Computer and Information, Vol. 25, No. 6, pp. 35-47, 2020.
- V. Subramaniyaswamy, M. V. Vaibhav, R. V. Prasad, and R. Logesh, "Predicting movie box office success using multiple regression and SVM," in Proc. of the 2017 International Conference on Intelligent Sustainable Systems (ICISS), pp. 182-186, IEEE, Dec. 2017.
- S. Leem, J. Oh, D. So, and J. Moon, "Towards Data-Driven Decision-Making in the Korean Film Industry: An XAI Model for Box Office Analysis Using Dimension Reduction, Clustering, and Classification," Entropy, Vol. 25, No. 4, p. 571, 2023.
- J. A. Costales, J. A. Abellana, J. S. Gracia, and M. Devaraj, "Analysis on Natural Language Processing Using Page Ranking Algorithm on YouTube Videos," in Proc. of the 2021 7th International Conference on Computing and Artificial Intelligence, pp. 173-177, Apr. 2021.
- T. Anwar, "Identify Hate Speech Spreaders on Twitter using Transformer Embeddings Features and AutoML Classifiers-Notebook for PAN at CLEF 2021," in CLEF, 2021.
- VKOBIS, "Available online: https://www.vkobis.or.kr/boxoffice/selectBoxofficeHistoryList.do (accessed on 25 February 2023)."
- E. Becht et al., "Dimensionality reduction for visualizing single-cell data using UMAP," Nature Biotechnology, Vol. 37, No. 1, pp. 38-44, 2019. https://doi.org/10.1038/nbt.4314
- M. W. Dorrity, L. M. Saunders, C. Queitsch, S. Fields, and C. Trapnell, "Dimensionality reduction by UMAP to visualize physical and genetic interactions," Nature Communications, Vol. 11, No. 1, p. 1537, 2020.
- D. Angelov, "Top2vec: Distributed representations of topics," arXiv preprint arXiv:2008.09470, 2020.
- M. Ali, "PyCaret: An open source, low-code machine learning library in Python," PyCaret version 2, 2020.
- S. M. Lundberg and S. I. Lee, "A unified approach to interpreting model predictions," in Proc. of the Advances in Neural Information Processing Systems 30, 2017.