Acknowledgement
본 연구는 과학기술정보통신부 및 정보통신기획평가원의 지역지능화혁신인재양성사업의 연구결과로 수행되었음 (IITP-2023-RS-2022-00156287)
References
- 정지성, 이명훈, 박종권, "클라우드 컴퓨팅기반 가축 질병 예찰 및 스마트 축사 통합 관제 시스템," 스마트미디어저널, 제8권, 제3호, 88-94쪽, 2019년
- 김남호, 정희자, 이현준, 고유진, "디지털트윈 기반 가축질병 예방을 지원하는 스마트축산 플랫폼," 2022 Conference of KISM, Vol.11, No.1, 287-288 쪽, 대한민국, 2022년 6월
- 이준환, "지능형 관제시스템을 위한 딥러닝 기반의 다중 객체 분류 및 추적에 관한 연구," 스마트미디어저널, 제12권, 제5호, 73-80쪽, 2023년 https://doi.org/10.30693/SMJ.2023.12.5.73
- 박종빈, "계층적 레이블링과 시공간 딥러닝 모델을 이용한 영상 기반 가축 행동 인식", 전북대학교 박사학위 논문, 2021년 2월
- 유거송, 여창민, "KISTEP 기술동향브리프 스마트 농업," 한국과학기술기획평가원, 03호, 2021년
- E. Vasseur, "Animal behavior and well-being symposium: Optimizing outcome measures of welfare in dairy cattle assessment," Journal of Animal Science, vol. 95, no. 3, pp. 1365-1371, 2017.
- J. Wang, H. Zhang, K. Zhao and G. Liu, "Cow movement behavior classification based on optimal binary decision-tree classification model," Trans. Chin. Soc. Agric. Eng, Vol. 34, No. 18, pp. 202-210, 2018.
- A. Nasirahmadi, O. Hensel, S.A. Edwards and B.Sturm, "A new approach for categorizing pig lying behaviour based on a Delaunay triangulation method," Animal, Vol. 11, No. 1, pp. 131-139, 2017. https://doi.org/10.1017/S1751731116001208
- Y. Peng, N.Kondo, T. Fujiura, T. Suzuki, H. Yoshioka and E. Itoyama, "Classification of multiple cattle behavior patterns using a recurrent neural network with long short-term memory and inertial measurement units," Computers and Electronics in Agriculture, Vol. 157, pp. 247-253, Feb. 2019. https://doi.org/10.1016/j.compag.2018.12.023
- A. Nasirahmadi, S.A. Edwards and B. Sturm, "Implementation of machine vision for detecting behaviour of cattle and pigs," Livestock Science, vol. 202, pp. 25-38, Aug. 2017. https://doi.org/10.1016/j.livsci.2017.05.014
- K. Wang, X. Zhao and Y. He, "Application of image information technology in dairy cow production," Chinese Journal of Animal Nutrition, Vol. 33, No. 20, pp. 197-209, 2017.
- K. Pasupa, N. Pantuwong and S. Nopparit, "A comparative study of automatic dairy cow detection using image processing techniques," Artif. Life Robot, Vol. 20, No. 4, pp. 320-326, 2015. https://doi.org/10.1007/s10015-015-0233-x
- A. Bochkovskiy, C.Y. Wang and H.Y.M. Liao, "Yolov4: Optimal speed and accuracy of object detection," arXiv:2004.10934, 2020.
- Detectron2(2019). https://github.com/facebookresearch/detectron2 (accessed Nov., 16, 2021).
- S. Ayadi, A.B. Said, R. Jabbar, C. Aloulou, A. Chabbouh and A.B. Achballah, "Dairy cow rumination detection: A deep learning approach," DiCES-N 2020: Distributed Computing for Emerging Smart Networks: Second International Workshop, pp. 123-139, Bizerte, Tunisia, Dec. 2020.
- X. Kang, X.D. Zhang and G.Liu, "Accurate detection of lameness in dairy cattle with computer vision: A new and individualized detection strategy based on the analysis of the supporting phase," Journal of dairy science, Vol. 103, No. 11, pp. 10628-10638, Nov. 2020. https://doi.org/10.3168/jds.2020-18288
- S. Chowdhury, B. Verma, J. Roberts, N. Corbet and D. Swain, "Deep learning based computer vision technique for automatic heat detection in cows," 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1-6, Gold Coast, Australia, Nov. 2016.
- J.Q. Gu, Z.H. Wang, R.H. Gao and H.R. Wu, "Cow behavior recognition based on image analysis and activities," International Journal of Agricultural and Biological Engineering, Vol. 10, No. 3, pp. 165-174, 2017. https://doi.org/10.25165/j.ijabe.20171004.2638
- E.J. He, S.J. Ahn and K.S. Choi, "Real-time cattle action recognition for estrus detection," KSII Transactions on Internet and Information Systems (TIIS), Vol. 13, No. 4, pp. 2148-2161, Apr. 2019.
- S.M. Noe, T.T. Zin, P. Tin and I. Kobayashi, "Automatic detection and tracking of mounting behavior in cattle using a deep learning-based instance segmentation model," Int. J. Innov. Comput. Inf. Control, Vol. 18, No. 1, pp. 211-220, 2022.