DOI QR코드

DOI QR Code

서비스 분야의 주요 이슈와 주제에 대한 흐름 분석: 유튜브 동영상과 학술연구 비교

Analysis of Trends of Critical Issues and Topics in the Service Sector: Comparing YouTube Videos and Research Publications

  • 투고 : 2023.07.11
  • 심사 : 2023.08.16
  • 발행 : 2023.08.30

초록

본 연구는 유튜브 동영상과 학문적 연구결과를 활용하여 서비스에 대한 주요 이슈와 주제를 파악하는데 목적이 있다. 2013년부터 2023년 6월까지 서비스 분야와 관련된 2,853편의 유튜브 동영상 콘텐츠와 19,973편의 연구논문을 텍스트 마이닝과 텍스트 네트워크 분석을 활용하였다. 또한, 수집된 데이터를 COVID-19 팬데믹 이전과 이후로 구분하여 서비스에 대한 주요 이슈와 주제가 어떻게 변화되는지를 분석하였다. 수집된 데이터는 텍스트 마이닝과 네트워크 구성 및 분석 절차를 통해 분석을 실시하였다. 분석결과, 유튜브 동영상 콘텐츠와 학술연구를 구분하여 연결 중심성 분석결과, 유튜브 동영상 콘텐츠에서 중심성이 높은 단어는 IT, data, solution 순으로 나타났고, 학술연구 분야에서는 서비스 품질, 품질, 고객만족 순으로 나타났다. 에고 네트워크 분석결과, 유튜브 동영상 콘텐츠의 경우 주요 이슈는 서비스 산업과 관련된 단어를 중심으로 나타났지만, 상대적으로 산업별 세부 분야를 포함하지 않고 있는 것으로 분석되었다. 그러나 학술연구 분야에서는 상대적으로 서비스 분야별 주요 이슈를 다양하게 포함하고 있는 것으로 분석되었다. 본 연구 결과는 서비스 산업에서 고객의 주요 관심사에 대한 변화를 학문적 실무적 관점에서 이해하는데 활용될 수 있다.

This study examines critical issues and topics related to services using YouTube videos and research publications. We analyzed 2,853 YouTube videos and 19,973 research papers related to services, released during the 2013-June, 2023 period, using text mining and network analysis. In addition, the collected data was divided into pre- and post-COVID-19 pandemic periods to explore how key issues and topics regarding services have changed. These papers were sequentially analyzed through text mining and network construction and procedures. The results indicate that the central themes of YouTube videos were IT, data, and solution, while academic research focused on service quality, quality, and customer satisfaction. Regarding ego network analysis, the key issues in YouTube video contents revolved primarily around words related to the service industry. Although it was found that they generally lacked specific industry fields, academic papers explored diverse issues in various service fields. The results of this study can be utilized to understand changes in customer concerns in the service industry from practical and academic perspectives.

키워드

참고문헌

  1. Brown, J. J. and Reingen, P. H. (1987). Social Ties and Word of Mouth Referral Behavior. Journal of Consumer Research, 14(3), 350-362. https://doi.org/10.1086/209118
  2. Chin, H. S., Marasini, D. P. and Lee, D. H. (2023). Digital Transformation Trends in Service Industries. Service Business, 17(1), 11-36. https://doi.org/10.1007/s11628-022-00516-6
  3. Cho, H., Kang, S. and Ryu, M. H. (2021). An Analysis of OTT Service Review Using Text Mining: Focusing on the Competitive Advantage of Local Service. The Journal of Korean Institute of Communications and Information Science, 46(4), 722-733. https://doi.org/10.7840/kics.2021.46.4.722
  4. Cho, K. W. and Han, N. Y. (2021). Research Trends on Emotional Labor in Korea Using Text Mining. Journal of the Korea Industrial Information Systems Research, 26(6), 119-133. https://doi.org/10.9723/JKSIIS.2021.26.6.119
  5. Cooper, H. B., Ewing, M. T. and Mishra, S. (2022). Text-Mining 10-K (annual) Reports: A Guide for B2B Marketing Research. Industrial Marketing Management, 107, 204-211. https://doi.org/10.1016/j.indmarman.2022.10.001
  6. Griffiths, T. and Steyvers, M. (2004). Finding Scientific Topics. Proceedings of the National Academy of Sciences, 101, 5228-5235. https://doi.org/10.1073/pnas.0307752101
  7. Jang, S. I. (2018). Industrial Structure Change Direction and Policy Issues in the Fourth Industrial Revolution. The Korea Spatial Planning Review, 424, 22-30.
  8. Ji, Y. H. and Yang, S. Y. (2016). A Qualitative Case Study on Activation of Creative Tourism through the Convergence of Medical Tourism Service: Focused on Local Governance's Political Trends and Roles. International Journal of Tourism Management and Sciences, 31(4), 151-170.
  9. Jeong, E. B. (2022). A Study on Negative Word-of-Mouth Virality of Social Media Using Big Data Analysis: From the Supply Chain Risk's Perspective. Journal of the Korea Industrial Information Systems Research, 27(2), 163-176. https://doi.org/10.9723/JKSIIS.2022.27.2.163
  10. Jeong, E. B. and Kim, D. S. (2018). A Systematic Literature Review on Service Research: Focus on Bibliometrics and Keyword Network Analyses. Journal of Korea Service Management Society, 19(4), 267-291. https://doi.org/10.15706/jksms.2018.19.4.013
  11. Jung, O. and Park, C. (2021). Effect of Traditional Digital Points in Beauty Stores on Ease of Decision Making and Satisfaction: Moderating Effect of Untact Tendency. Services Marketing Journal, 14(2), 77-92.
  12. Kang, J. W. and Young, N. (2021). Understanding Consumers' Perceptions of the Fresh-Food Delivery Platform Service Based on Big Data: Using Text Mining and Semantic Network Analysis. Korean Journal of Hospitality and Tourism, 30(2), 37-52. https://doi.org/10.24992/KJHT.2021.2.30.02.37
  13. Kim, M. S. and Kim, J. (2022). Research on the Users' Inquiries on the Easy Payment Services Using Text Mining Method, Journal of Korea Multimedia Society, 25(2), 269-279. https://doi.org/10.9717/KMMS.2022.25.2.269
  14. Kim, H. J., Lee, T., Ryu, S. E. and Kim, N. (2018). A Study on Text Mining Methods to Analyze Civil Complaints: Structured Association Analysis. Journal of the Korea Industrial Information Systems Research, 23(3), 13-24. https://doi.org/10.9723/JKSIIS.2018.23.3.013
  15. Ko, M. H. (2023). Public's Perception of Airport Bio-Metric Service in Airport Confirmed through Social Media: Using Text Mining Techniques. Journal of Tourism & Leisure Research, 35, 397-312.
  16. Ko, M. and Lee, S. (2021). A Comparative Analysis of OTT Service Reviews Before and After the Onset of the Pandemic Using Text Mining Technique: Focusing on the Emotion-Focused Coping and Nostalgia. The Journal of the Korea Contents Association, 21(11), 375-388. https://doi.org/10.5392/JKCA.2021.21.11.375
  17. KOSTAT (2018). https://kostat.go.kr/board.es?mid=a10502120100&bid=3240&act=view&list_no=71996&tag=&nPage=1&ref_bid=3240, 3241
  18. Kwon, H. J. and Jun, J. K. (2020). The Exploratory Study on Accommodation Sharing Service of the Airbnb Utilizing Text Mining Technique. Culinary Science & Hospitality Research, 26(8), 143-153.
  19. Lee, S. M. and Rha, J. S. (2018). A Network Text Analysis of Published Papers in Service Business, 2007-2017: Research Trends in the Service Sector. Service Business, 12, 809-831. https://doi.org/10.1007/s11628-018-0377-6
  20. Lee, B., Oh, J., Leem, S., Shon, W. and Moon, J. (2023). A Case Study on Big Data Processing and Analysis Based on Text Mining: Focusing on Amazon Web Services in South Korea. The Journal of Society for e-Business Studies, 28(2), 53-74. https://doi.org/10.7838/jsebs.2023.28.2.053
  21. Lim, C., Ha, J. S., Cho, K. H. and Ha, H. K. (2021). Analyzing Customers' Perception of Service and Market Trends in Fresh Food E-commerce: Application of Text Mining Techniques. The Journal of Internet Electronic Commerce Research, 21(4), 169-182. https://doi.org/10.37272/JIECR.2021.06.21.4.169
  22. Pew Research Center (2023). https://www.pewresearch.org/short-reads/2023/04/24/teensand-social-media-key-findings-from-pew-research-center-surveys/
  23. OECD (2008). Productivity Growth in Services. OECD Facebook
  24. Oh, Y. and Yi, J. (2023). Determinants of Online Food Delivery(OFD) Sales during COVID-19. Global Business and Finance Review, 28(2), 93-106. https://doi.org/10.17549/gbfr.2023.28.2.93
  25. Rha, J. S. (2022). Analysis of Factors Affecting Surge in Container Shipping Rates in the Era of Covid 19 Using Text Analysis. Journal of the Korea Industrial Information Systems Research, 27(1), 111-123.
  26. Rha, J. S. (2022). Review of ESG Challenges in Supply Chain Management Using Text Analysis. Journal of the Korea Industrial Information Systems Research, 27(5), 145-156. https://doi.org/10.9723/JKSIIS.2022.27.5.145
  27. Rha, J. S. and Lee, H. H. (2022). Research Trends in Digital Transformation in the Service Sector: A Review Based on Network Text Analysis. Service Business, 16, 77-98. https://doi.org/10.1007/s11628-022-00481-0
  28. Roy, S. K., Singh, G., Hope, M., Nguyen, B. and Harrigan, P. (2019). The Rise of Smart Consumers: Role of Smart Servicescape and Smart Consumer Experience Co-creation. Journal of Marketing Management, 35(15-16), 1480-1513. https://doi.org/10.1080/0267257X.2019.1680569
  29. Scholz, J. and Duffy, K. (2018). We are at Home: How Augmented Reality Reshapes Mobile Marketing and Consumer Brand Relationships. Journal of Retailing and Consumer Services, 44(4), 11-23. https://doi.org/10.1016/j.jretconser.2018.05.004
  30. Shin, H. J. (2018). An Exploratory Study on the Experience of Service Convergence in the Social Welfare Field. Korea Convergence Society, 9(9), 319-327.
  31. Tsiotsou, R. H. and Boukis, A. (2022). In-Home Service Consumption: A Systematic Review, Integrative Framework and Future Research Agenda. Journal of Business Research, 145, 49-64. https://doi.org/10.1016/j.jbusres.2022.02.050
  32. World Bank (2022). https://data.worldbank.org/indicator/SL.IND.EMPL.ZS
  33. Yang, D. H., Kim, S., Nam, C. and Moon, J. S. (2004). Fixed and Mobile Service Convergence and Reconfiguration of Telecommunications Value Chains. IEEE Wireless Communication, 11(5), 42-47. https://doi.org/10.1109/MWC.2004.1351680