DOI QR코드

DOI QR Code

탄소나노튜브 섬유 개발

Recent Development of Carbon Nanotubes Fibers

  • 김수빈 (단국대학교 파이버시스템공학과) ;
  • 이원준 (단국대학교 파이버시스템공학과)
  • Su Bin Kim (Department of Fiber System Engineering, Dankook University) ;
  • Won Jun Lee (Department of Fiber System Engineering, Dankook University)
  • 투고 : 2023.05.26
  • 심사 : 2023.06.12
  • 발행 : 2023.06.30

초록

Carbon nanotube fibers (CNTFs), the unidirectional macroscopic assembled structure of carbon nanotubes (CNTs), have excellent physicochemical properties including high tensile strength, flexibility, electrical conductivity, and thermal conductivity, which are desirable for utilizing the structural hexagonal graphitic structure ultimately. For last decades, to tailor their physical and chemical features of CNTFs, the research development on purification, spinning technique, and post processing have been pursued continuously. To outline the features of CNTFs, we first outlook the properties of single walled (SW), multi walled (MW) carbon nanotubes, as well as carbon fibers (CFs), which is helpful to predict what would be beneficial after assembling CNTs into fibers compared to CFs. Then we review the properties of single walled carbon nanotube fibers produced by several spinning techniques such as 1. vertically aligned CNT (VACNT) array spinning, 2. direct spinning from floating catalyst chemical vapor deposition (FCCVD), and 3. Wet spinning from CNT solution, together with the brief description of their production methods, respectively. At the end, we briefly describe their genuine and potential applications such as textile electronics, artificial muscles, energy storage devices, and automotive parts. We expect the understanding for CNTs and CNTFs are helpful for not only ensuring their practical use in aforementioned applications but also paving the way for the development of cutting-edge materials.

키워드

참고문헌

  1. M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, "Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load", Science, 2000, 287, 637-640.  https://doi.org/10.1126/science.287.5453.637
  2. J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, "Electronic Structure of Atomically Resolved Carbon Nanotubes", Nature, 1998, 391, 59-62.  https://doi.org/10.1038/34139
  3. R. Rao, C. L. Pint, A. E. Islam, R. S. Weatherup, S. Hofmann, E. R. Meshot, F. Wu, C. Zhou, N. Dee, P. B. Amama, J. Carpena-Nunez, W. Shi, D. L. Plata, E. S. Penev, B. I. Yakobson, P. B. Balbuena, C. Bichara, D. N. Futaba, S. Noda, H. Shin, K. S. Kim, B. Simard, F. Mirri, M. Pasquali, F. Fornasiero, E. I. Kauppinen, M. Arnold, B. A. Cola, P. Nikolaev, S. Arepalli, H.-M. Cheng, D. N. Zakharov, E. A. Stach, J. Zhang, F. Wei, M. Terrones, D. B. Geohegan, B. Maruyama, S. Maruyama, Y. Li, W. W. Adams, and A. J. Hart, "Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis Toward Mainstream Commercial Applications", ACS Nano, 2018, 12, 11756-11784. https://doi.org/10.1021/acsnano.8b06511
  4. E. Ali, D. Hadis, K. Hamzeh, K. Mohammad, Z. Nosratollah, A. Abolfazl, A. Mozhgan, H. Younes, and J. S. Woo, "Carbon Nanotubes: Properties, Synthesis, Purification, and Medical Applications", Nanoscale Res. Lett., 2014, 9, 393. 
  5. S. Iijima, "Helical Microtubules of Graphitic Carbon", Nature, 1991, 354, 56-58.  https://doi.org/10.1038/354056a0
  6. M. Hussain and M. Naeem, "Vibration Analysis of Single-walled Carbon Nanotubes Using Wave Propagation Approach", Mech. Sci., 2017, 8, 155-164.  https://doi.org/10.5194/ms-8-155-2017
  7. J. P. Lu, "Elastic Properties of Single and Multilayered Nanotubes", J. Phys. Chem. Solids, 1997, 58, 1649-1652.  https://doi.org/10.1016/S0022-3697(97)00045-0
  8. Y. H. Lee, "The Physical Property and Application of Carbon Nanotube", Sea Mulli, 2005, 51, 84-144. 
  9. Q. Cao, Q. Yu, D. W. Connell, and G. Yu, "Titania/Carbon Nanotube Composite (TiO2/cnt) and Its Application for Removal of Organic Pollutants", Clean Technologies and Environmental Policy, 2013, 15, 871-880.  https://doi.org/10.1007/s10098-013-0581-y
  10. A. Lekawa-raus, J. Patmore, L. Kurzepa, J. Bulmer, and K. Koziol, "Electrical Properties of Carbon Nanotube Based Fibers and Their Future Use in Electrical Wiring", Adv. Funct. Mater., 2014, 24, 3661-3682.  https://doi.org/10.1002/adfm.201303716
  11. M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, "Carbon Nanotubes: Present and Future Commercial Applications", Science, 2013, 339, 535-539.  https://doi.org/10.1126/science.1222453
  12. R. I. Rubel, M. H. Ali, M. A. Jafor, and M. M. Alam, "Carbon Nanotubes Agglomeration in Reinforced Composites: A Review", Aims Mater. Sci., 2019, 6, 756-780.  https://doi.org/10.3934/matersci.2019.5.756
  13. D. Punera, "The Effect of Agglomeration and Slightly Weakened CNT-matrix Interface on Free Vibration Response of Cylindrical Nanocomposites", Acta Mechanica, 2021, 232, 2455-2477.  https://doi.org/10.1007/s00707-020-02933-y
  14. B. Koh and W. Cheng, "Mechanisms of Carbon Nanotube Aggregation and the Reversion of Carbon Nanotube Aggregates in Aqueous Medium", Langmuir, 2014, 30, 10899-10909.  https://doi.org/10.1021/la5014279
  15. S. Grishchuk and R. Schledjewski, "Mechanical Dispersion Methods for Carbon Nanotubes in Aerospace Composite Matrix Systems", Carbon Nanotube Enhanced Aerospace Composite Materials, 2013, 188, 99-154.  https://doi.org/10.1007/978-94-007-4246-8_4
  16. A. Sobolkina, V. Mechtcherine, V. Khavrus, D. Maier, M. Mende, M. Ritschel, and A. Leonhardt, "Dispersion of Carbon Nanotubes and Its Influence on the Mechanical Properties of the Cement Matrix", Cement and Concrete Composites, 2012, 34, 1104-1113.  https://doi.org/10.1016/j.cemconcomp.2012.07.008
  17. C. Pramanik, J. R. Gissinger, S. Kumar, and H. Heinz, "Carbon Nanotube Dispersion in Solvents and Polymer Solutions: Mechanisms, Assembly, and Preferences", ACS Nano, 2017, 11, 12805-12816.  https://doi.org/10.1021/acsnano.7b07684
  18. S. Mallakpour and S. Soltanian, "Surface Functionalization of Carbon Nanotubes: Fabrication and Applications", RSC Adv., 2016, 6, 109916-109935.  https://doi.org/10.1039/C6RA24522F
  19. E. Heister, C. Lamprecht, V. Neves, C. Tilmaciu, L. Datas, E. Flahaut, B. Soula, P. Hinterdorfer, H. M. Coley, S. R. P. Silva, and J. Mcfadden, "Higher Dispersion Efficacy of Functionalized Carbon Nanotubes in Chemical and Biological Environments", ACS Nano, 2010, 4, 2615-2626.  https://doi.org/10.1021/nn100069k
  20. J. M. Park, J. H. Jang, Z. J. Wang, D. J. Kwon, G.-Y. Gu, W.-I. Lee, J.-K. Park, and K. L. Devries, "Dispersion and Related Properties of Acid-treated Carbon Nanotube/epoxy Composites Using Electro-micromechanical, Surface Wetting and Single Carbon Fiber Sensor Tests", Adv. Compos. Mater., 2011, 20, 337-360.  https://doi.org/10.1163/092430410X550881
  21. P. S. Goh, A. F. Ismail, and M. Aziz, "Effect of Acid Oxidation on the Dispersion Property of Multiwalled Carbon Nanotubes", AIP Conference Proceedings, 2009, 1136, 224-228. 
  22. P.-C. Ma, N. A. Siddiqui, G. Marom, and J.-K. Kim, "Dispersion and Functionalization of Carbon Nanotubes for Polymer-based Nanocomposites: A Review", Compos. Part A: Appl. Sci. Manuf., 2010, 41, 1345-1367.  https://doi.org/10.1016/j.compositesa.2010.07.003
  23. S. Manzetti and J.-C. P. Gabriel, "Methods for Dispersing Carbon Nanotubes for Nanotechnology Applications: Liquid Nanocrystals, Suspensions, Polyelectrolytes, Colloids and Organization Control", Int. Nano Lett., 2019, 9, 31-49.  https://doi.org/10.1007/s40089-018-0260-4
  24. C. V. Kumar and A. Pattammattel (Eds.), "Introduction to Graphene", Graphene Hybrids with Carbon Allotropes, Elsevier, 2017, pp.123-139. 
  25. X. Zhang, W. Lu, G. Zhou, and Q. Li, "Understanding the Mechanical and Conductive Properties of Carbon Nanotube Fibers for Smart Electronics", Adv. Mater., 2020, 32, 1902028. 
  26. S. Jestin and P. Poulin in "Nanotube Superfiber Materials", Wet Spinning of CNT-based Fibers (M. J. Schulz, V. N. Shanov, and Z. Yin Eds.), William Andrew Publishing, 2014, pp.167-209. 
  27. K. Kang, C. Choi, and J. Jin, "A Wet-Spinning Process for Producing Carbon Nanotube/Polyvinylidene Fluoride Fibers Having Highly Consistent Electrical and Mechanical Properties", Polymers, 2021, 13, 4048. 
  28. A. Wang, Spinning Methods for Carbon Nanotube Fibers, Dissertations, 2014. 
  29. A. Mikhalchan and J. J. Vilatela, "A Perspective on High-performance CNT Fibres for Structural Composites", Carbon, 2019, 150, 191-215.  https://doi.org/10.1016/j.carbon.2019.04.113
  30. R. Guzman De Villoria, L. Ydrefors, P. Hallander, K. Ishiguro, P. Nordin, and B. Wardle, "Aligned Carbon Nanotube Reinforcement of Aerospace Carbon Fiber Composites: Substructural Strength Evaluation for Aerostructure Applications", in Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2012. 
  31. Y. Cao, T. Zhou, K. Wu, Z. Yong, and Y. Zhang, "Aligned Carbon Nanotube Fibers for Fiber-shaped Solar Cells, Supercapacitors and Batteries", RSC Adv., 2021, 11, 6628-6643.  https://doi.org/10.1039/D0RA09482J
  32. A. Kohls, M. Maurer Ditty, F. Dehghandehnavi, and S.-Y. Zheng, "Vertically Aligned Carbon Nanotubes as a Unique Material for Biomedical Applications", ACS Appl. Mater. Interfaces, 2022, 14, 6287-6306.  https://doi.org/10.1021/acsami.1c20423
  33. P. Liu, Z. Fan, A. Mikhalchan, T. Tran, D. Jewell, H. Duong, and A. Marconnet, "Continuous Carbon Nanotube-based Fibers and Films for Applications Requiring Enhanced Heat Dissipation", ACS Appl. Mater. Interfaces, 2016, 8, 17461-17471.  https://doi.org/10.1021/acsami.6b04114
  34. A. Mikhalchan, M. Vila, L. Arevalo, and J. J. Vilatela, "Simultaneous Improvements in Conversion and Properties of Molecularly Controlled CNT Fibres", Carbon, 2021, 179, 417-424.  https://doi.org/10.1016/j.carbon.2021.04.033
  35. T. Fujimori, D. Yamashita, Y. Kishibe, M. Sakai, H. Inoue, T. Onoki, J. Otsuka, D. Tanioka, T. Hikata, S. Okubo, K. Akada, and J. I. Fujita, "One Step Fabrication of Aligned Carbon Nanotubes Using Gas Rectifier", Sci. Rep., 2022, 12, 1-9.  https://doi.org/10.1038/s41598-021-99269-x
  36. Y. Zhang and S. Han, "Carbon Nanotube Fibers Prepared by Activating Deactivated Iron Particles in Floating Catalyst Chemical Vapor Deposition Tail Gas", Medziagotyra, 2017, 23, 260-265.  https://doi.org/10.5755/j01.ms.23.3.17050
  37. Y. Zhang and S. Han, "Carbon Nanotube Fibers Prepared by Activating Deactivated Iron Particles in Floating Catalyst Chemical Vapor Deposition Tail Gas", Medziagotyra, 2017, 23, 260-265.  https://doi.org/10.5755/j01.ms.23.3.17050
  38. L. Dong, J. G. Park, B. Leonhardt, S. Zhang, and R. Liang, "Continuous Synthesis of Double-walled Carbon Nanotubes with Water-assisted Floating Catalyst Chemical Vapor Deposition", Nanomaterials, 2020, 10, 365. 
  39. T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, and R. E. Smalley, "Self-assembly of Tubular Fullerenes", J. Phys. Chem., 1995, 99, 10694-10697.  https://doi.org/10.1021/j100027a002
  40. R. Das, Z. Shahnavaz, M. E. Ali, M. M. Islam, and S. B. Abd Hamid, "Can We Optimize Arc Discharge and Laser Ablation for Well-controlled Carbon Nanotube Synthesis?", Nanoscale Res. Lett., 2016, 11, 150. 
  41. H. Rahman, B. Krishnamoorthy, N. Tamilselvan, K. Siram, S. Karthik, and R. Hariprasad, "Nanomaterials in Drug Delivery: Existing Scenario and Potential Scope", Nanobiomaterials in Drug Delivery: Applications of Nanobiomaterials, 2016, 9, 197-228.  https://doi.org/10.1016/B978-0-323-42866-8.00007-1
  42. N. Arora and N. N. Sharma, "Arc Discharge Synthesis of Carbon Nanotubes: Comprehensive Review", Diamond and Related Materials, 2014, 50, 135-150.  https://doi.org/10.1016/j.diamond.2014.10.001
  43. J. M. Herrera-Ramirez, R. Perez-Bustamante, and A. Aguilar-Elguezabal in "An Overview of the Synthesis, Characterization, and Applications of Carbon Nanotubes" (S. Yaragalla, R. Mishra, S. Thomas, N. Kalarikkal, and H. Maria Eds.), Elsevier, 2019, pp.47-75. 
  44. V. Skudin, T. Andreeva, M. Myachina, and N. Gavrilova, "CVD-synthesis of N-CNT Using Propane and Ammonia", Materials, 2022, 15, 2241. 
  45. X. D. Wang, K. Vinodgopal, and G. P. Dai in "Synthesis of Carbon Nanotubes by Catalytic Chemical Vapor Deposition" (H. E.-d. Saleh and S. M. M. El-sheikh Eds.), Intechopen, 2019, Chap. 2. 
  46. F. Ghaharpour, A. Bahari, M. Abbasi, and A. A. Ashkarran, "Parametric Investigation of CNT Deposition on Cement by CVD Process", Construction and Building Materials, 2016, 113, 523-535.  https://doi.org/10.1016/j.conbuildmat.2016.03.080
  47. X. Xu, S. Xie, Y. Zhang, and H. Peng, "The Rise of Fiber Electronics", Angewandte Chemie - International Edition, 2019, 58, 13643-13653.  https://doi.org/10.1002/anie.201902425
  48. R. Wu, L. Ma, C. Hou, Z. Meng, W. Guo, W. Yu, R. Yu, F. Hu, and X. Y. Liu, "Silk Composite Electronic Textile Sensor for High Space Precision 2D Combo Temperature-pressure Sensing", Small, 2019, 15, 1-11.  https://doi.org/10.1002/smll.201901558
  49. G. Zhou, J. H. Byun, Y. Oh, B. M. Jung, H. J. Cha, D. G. Seong, M. K. Um, S. Hyun, and T. W. Chou, "Highly Sensitive Wearable Textile-based Humidity Sensor Made of High-strength, Single-walled Carbon Nanotube/poly(Vinyl Alcohol) Filaments", ACS Appl. Mater. Interfaces, 2017, 9, 4788-4797.  https://doi.org/10.1021/acsami.6b12448
  50. J. Di, X. Zhang, Z. Yong, Y. Zhang, D. Li, R. Li, and Q. Li, "Carbon-nanotube Fibers for Wearable Devices and Smart Textiles", Adv. Mater., 2016, 28, 10529-10538.  https://doi.org/10.1002/adma.201601186
  51. J. Qiao, J. Di, S. Zhou, K. Jin, S. Zeng, N. Li, S. Fang, Y. Song, M. Li, R. H. Baughman, and Q. Li, "Large-stroke Electrochemical Carbon Nanotube/graphene Hybrid Yarn Muscles", Small, 2018, 14, 1-8.  https://doi.org/10.1002/smll.201801883
  52. X. Leng, X. Hu, W. Zhao, B. An, X. Zhou, and Z. Liu, "Recent Advances in Twisted-fiber Artificial Muscles", Adv. Intelligent Systems, 2021, 3, 2000185. 
  53. Y. Chen, C. Chen, H. U. Rehman, X. Zheng, H. Li, H. Liu, and M. S. Hedenqvist, "Shape-memory Polymeric Artificial Muscles", Molecules, 2020, 25, 4246. 
  54. J. Foroughi and G. Spinks, "Carbon Nanotube and Graphene Fiber Artificial Muscles", Nanoscale Adv., 2019, 1, 4592-4614.  https://doi.org/10.1039/C9NA00038K
  55. M. H. Islam, S. Afroj, M. A. Uddin, D. V. Andreeva, K. S. Novoselov, and N. Karim, "Graphene and CNT-based Smart Fiber-reinforced Composites: A Review", Adv. Funct. Mater., 2022, 32, 40. 
  56. Y. Zhu, H. Yue, M. J. Aslam, Y. Bai, Z. Zhu, and F. Wei, "Controllable Preparation and Strengthening Strategies Towards High-strength Carbon Nanotube Fibers", Nanomaterials, 2022, 12, 1-24.  https://doi.org/10.3390/nano12193478
  57. D. C. Celikel, "Smart E-textile Materials", 2020, doi: 10.5772/intechopen.92439. 
  58. B. Zhao, V. S. Sivasankar, A. Dasgupta, and S. Das, "Ultrathin and Ultrasensitive Printed Carbon Nanotube-based Temperature Sensors Capable of Repeated Uses on Surfaces of Widely Varying Curvatures and Wettabilities", ACS Appl. Mater. Interfaces, 2021, 13, 10257-10270.  https://doi.org/10.1021/acsami.0c18095
  59. S. Saleemi, M. A. Aouraghe, X. Wei, W. Liu, L. Liu, M. I. Siyal, J. Bae, and F. Xu, "Bio-inspired Hierarchical Carbon Nanotube Yarn with Ester Bond Cross-linkages Towards High Conductivity for Multifunctional Applications", Nanomaterials, 2022, 12, 208. 
  60. R. Krishna, "Hydrogen Storage for Energy Application", 2012, doi: 10.5772/51238. 
  61. J. Foroughi and G. Spinks, "Carbon Nanotube and Graphene Fiber Artificial Muscles", Nanoscale Adv., 2019, 1, 4592-4614.  https://doi.org/10.1039/C9NA00038K
  62. F. Wang, S. Zhao, Q. Jiang, R. Li, Y. Zhao, Y. Huang, X. Wu, B. Wang, and R. Zhang, "Advanced Functional Carbon Nanotube Fibers from Preparation to Application", Cell Rep. Phys. Sci., 2022, 3, 100989. 
  63. S. Rana, A. Bhattacharyya, S. Parveen, R. Fangueiro, A. Ramasamy, and M. Joshi, "Processing and Performance of Carbon/epoxy Multi-scale Composites Containing Carbon Nanofibres and Single Walled Carbon Nanotubes", J. Polym. Res., 2013, 20, 314. 
  64. S. Muhammad, G. Ali, Z. Shah, and S. Islam, "The Rotating Flow of Magneto Hydrodynamic Carbon Nanotubes over a Stretching Sheet with the Impact of Non-linear Thermal Radiation and Heat Generation/absorption", Appl. Sci., 2018, 8, 482. 
  65. Q. W. Ahmed, D. A. Alazawi, and H. B. Mohammed, "Study the Behavior of Elastic Modulus for Zigzag and Armchair Single Wall Carbon Nanotube Structure with FEM", J. Eng. Sustainable Development, 2022, 25, 114-125.  https://doi.org/10.31272/jeasd.25.4.10
  66. J. Doh and J. Lee, "Prediction of the Mechanical Behavior of Double Walled-CNTs Using a Molecular Mechanics-based Finite Element Method: Effects of Chirality", Comput. Struct., 2016, 169, 91-100.  https://doi.org/10.1016/j.compstruc.2016.03.006
  67. H. N. Zhang, Y. Fan, and H. S. Shen, "Chirality-dependent and Intrinsic Auxeticity for Single-walled Carbon Nanotubes", Materials, 2022, 15, 8720. 
  68. J. R. Xiao, B. A. Gama, and J. W. Gillespie Jr, "An Analytical Molecular Structural Mechanics Model for the Mechanical Properties of Carbon Nanotubes", Int. J. Solids Struct., 2005, 42, 3075-3092.  https://doi.org/10.1016/j.ijsolstr.2004.10.031
  69. A. Garg, H. D. Chalak, M. O. Belarbi, A. M. Zenkour, and R. Sahoo, "Estimation of Carbon Nanotubes and Their Applications as Reinforcing Composite Materials-an Engineering Review", Compos. Struct., 2021, 272, 114234. 
  70. S. Y. Yue, T. Ouyang, and M. Hu, "Diameter Dependence of Lattice Thermal Conductivity of Single-walled Carbon Nanotubes: Study from Ab Initio", Sci. Rep., 2015, 5, 1-8.  https://doi.org/10.1038/srep15440
  71. B. Kumanek and D. Janas, "Thermal Conductivity of Carbon Nanotube Networks: A Review", J. Mater. Sci., 2019, 54, 7397-7427.  https://doi.org/10.1007/s10853-019-03368-0
  72. H. Yazdani, K. Hatami, and M. Eftekhari, "Mechanical Properties of Single-walled Carbon Nanotubes: A Comprehensive Molecular Dynamics Study", Mater. Res. Exp., 2017, 4, 055015. 
  73. H. Rezania, "Electrical Conductivity of Zigzag Carbon Nanotubes Including Holstein Polarons", Eur. Phys. J. B, 2012, 85, 338. 
  74. S. Sahoo, V. R. Chitturi, R. Agarwal, J.-W. Jiang, and R. S. Katiyar, "Thermal Conductivity of Freestanding Single Wall Carbon Nanotube Sheet by Raman Spectroscopy", ACS Appl. Mater. Interfaces, 2014, 6, 19958-19965.  https://doi.org/10.1021/am505484z
  75. D.-H. Xu, Z.-G. Wang, and J. F. Douglas, "Influence of Carbon Nanotube Aspect Ratio on Normal Stress Differences in Isotactic Polypropylene Nanocomposite Melts", Macromolecules, 2008, 41, 815-825.  https://doi.org/10.1021/ma702178e
  76. R. Manoj Kumar, S. K. Sharma, B. V. Manoj Kumar, and D. Lahiri, "Effects of Carbon Nanotube Aspect Ratio on Strengthening and Tribological Behavior of Ultra High Molecular Weight Polyethylene Composite", Compos. Part A: Appl. Sci. Manuf., 2015, 76, 62-72.  https://doi.org/10.1016/j.compositesa.2015.05.007
  77. M. E. Birch, T. A. Ruda-Eberenz, M. Chai, R. Andrews, and R. L. Hatfield, "Properties That Influence the Specific Surface Areas of Carbon Nanotubes and Nanofibers", The Annals of Occupational Hygiene, 2013, 57, 1148-1166. 
  78. S. A. Saraireh, M. A. Tarawneh, R. S. Chen, B. O. Alsobhi, D. Shahdan, S. Gan, and S. Moosavi in "Chemical Properties of Carbon Nanotubes" (Y. B. T.-G. Al-douri Ed.), Nanotubes and Quantum Dots-based Nanotechnology, Woodhead Publishing, 2022, pp.281-304. 
  79. K. S. Ibrahim, "Carbon Nanotubes-properties and Applications: A Review", Carbon Lett., 2013, 14, 131-144.  https://doi.org/10.5714/CL.2013.14.3.131
  80. M. Zhang, M. Yang, H. Nakajima, M. Yudasaka, S. Iijima, and T. Okazaki, "Diameter-dependent Degradation of 11 Types of Carbon Nanotubes: Safety Implications", ACS Appl. Nano Mater., 2019, 2, 4293-4301.  https://doi.org/10.1021/acsanm.9b00757
  81. R. Saito and M. S. Dresselhaus in "Optical Properties of Carbon Nanotubes" (K. Tanaka and S. Iijima Eds.), Elsevier, 2014, pp.77-98. 
  82. S. U. Khan, J. R. Pothnis, and J.-K. Kim, "Effects of Carbon Nanotube Alignment on Electrical and Mechanical Properties of Epoxy Nanocomposites", Compos. Part A: Appl. Sci. Manuf., 2013, 49, 26-34.  https://doi.org/10.1016/j.compositesa.2013.01.015
  83. J. C. Stallard, W. Tan, F. R. Smail, T. S. Gspann, A. M. Boies, and N. A. Fleck, "The Mechanical and Electrical Properties of Direct-spun Carbon Nanotube Mats", Extreme Mech. Lett., 2018, 21, 65-75.  https://doi.org/10.1016/j.eml.2018.03.003
  84. A. M. Amani, S. A. Hashemi, S. M. Mousavi, S. M. Abrishamifar, and A. Vojood in "Electric Field Induced Alignment of Carbon Nanotubes: Methodology and Outcomes" (M. M. Rahman and A. M. Asiri Eds.), Ch. 5, Intechopen, 2017. 
  85. M. Holzinger, J. Abraham, P. Whelan, R. Graupner, L. Ley, F. Hennrich, M. Kappes, and A. Hirsch, "Functionalization of Single-walled Carbon Nanotubes with (R-)oxycarbonyl Nitrenes", J. Am. Chem. Soc., 2003, 125, 8566-8580.  https://doi.org/10.1021/ja029931w
  86. F. Z. Bouanis, M. Bensifia, I. Florea, S. Mahouche-chergui, B. Carbonnier, D. Grande, C. Leonard, A. Yassar, and D. Pribat, "Non-covalent Functionalization of Single Walled Carbon Nanotubes with Fe-/co-porphyrin and Co-phthalocyanine for Field-effect Transistor Applications", Org. Electr., 2021, 96, 106212. 
  87. S. Banerjee, T. Hemraj-Benny, and S. S. Wong, "Covalent Surface Chemistry of Single-walled Carbon Nanotubes", Adv. Mater., 2005, 17, 17-29.  https://doi.org/10.1002/adma.200401340
  88. C. Ingrosso, G. V. Bianco, P. Lopalco, M. Tamborra, M. L. Curri, A. Corcelli, G. Bruno, A. Agostiano, P. Siciliano, and M. Striccoli, "Surface Chemical Functionalization of Single Walled Carbon Nanotubes with a Bacteriorhodopsin Mutant", Nanoscale, 2012, 4, 6434-6441.  https://doi.org/10.1039/c2nr31999c
  89. C. Luigi, A. Buoso, and F. Corazza, Comparative Evaluation of Piezoresistivity of CNTs/cement Composites Measured by AC and DC Technique, 2015. 
  90. R. M. Osmani, A. S. Kulkarni, N. H. Aloorkar, R. R. Bhosale, P. P. Ghodake, and B. R. Harkare, "Carbon Nanotubes: An Impending Carter in Therapeutics", Int. J. Pharm. Clin. Res., 2014, 6, 84-96. 
  91. K. Shirasu, G. Yamamoto, D. Nelias, and T. Hashida in "Mechanical and Fracture Properties of Carbon Nanotubes" (M. M. Rahman and A. M. Asiri Eds.), Ch. 6, Intechopen, 2017. 
  92. F. Muftah, M. S. H. Mohd Sani, M. Muda, and S. Mohammad, "Assessment of Connection Arrangement of Built-up Cold-formed Steel Section Under Axial Compression", Adv. Mater. Res., 2014, 1043, 252-257.  https://doi.org/10.4028/www.scientific.net/AMR.1043.252
  93. P. V. Gulgunje, B. A. Newcomb, K. Gupta, H. G. Chae, T. K. Tsotsis, and S. Kumar, "Low-density and High-modulus Carbon Fibers from Polyacrylonitrile with Honeycomb Structure", Carbon, 2015, 95, 710-714.  https://doi.org/10.1016/j.carbon.2015.08.097
  94. Z. Zhang, W. Yang, L. Cheng, W. Cao, M. Sain, J. Tan, A. Wang, and H. Jia, "Carbon Fibers with High Electrical Conductivity: Laser Irradiation of Mesophase Pitch Filaments Obtains High Graphitization Degree", ACS Sustainable Chem. Eng., 2020, 8, 17629-17638.  https://doi.org/10.1021/acssuschemeng.0c02454
  95. H. Cho, H. Lee, E. Oh, S.-H. Lee, J. Park, H. J. Park, S.-B. Yoon, C.-H. Lee, G.-H. Kwak, W. J. Lee, J. Kim, J. E. Kim, and K.-H. Lee, "Hierarchical Structure of Carbon Nanotube Fibers, and the Change of Structure During Densification by Wet Stretching", Carbon, 2018, 136, 409-416.  https://doi.org/10.1016/j.carbon.2018.04.071
  96. H. Fan, K. Zhang, and M. M. F. Yuen, "Thermal Performance of Carbon Nanotube-based Composites Investigated by Molecular Dynamics Simulation", 2007 Proceedings 57th Electronic Components and Technology Conference, 2007, pp.269-272. 
  97. A. Venkataraman, E. V. Amadi, Y. Chen, and C. Papadopoulos, "Carbon Nanotube Assembly and Integration for Applications", Nanoscale Res. Lett., 2019, 14, 1-47.  https://doi.org/10.1186/s11671-018-2843-4
  98. H. D. Jeong, S. G. Kim, G. M. Choi, M. Park, B.-C. Ku, and H. S. Lee, "Theoretical and Experimental Investigation of the Wet-spinning Process for Mechanically Strong Carbon Nanotube Fibers", Chem. Eng. J., 2021, 412, 128650. 
  99. K.-W. Kang, C.-W. Choi, and J.-W. Jin, "A Wet-spinning Process for Producing Carbon Nanotube/polyvinylidene Fluoride Fibers Having Highly Consistent Electrical and Mechanical Properties", Polymers, 2021, 13, 4048. 
  100. T. Zheng, N. Xu, Q. Kan, H. Li, C. Lu, P. Zhang, X. Li, D. Zhang, and X. Wang, "Wet-spinning Assembly of Continuous, Highly Stable Hyaluronic/multiwalled Carbon Nanotube Hybrid Microfibers", Polymers, 2019, 11, 1-14.  https://doi.org/10.3390/polym11050867
  101. K. Jiang, Q. Li, and S. Fan, "Spinning Continuous Carbon Nanotube Yarns", Nature, 2002, 419, 801. 
  102. M. Zhang, K. R. Atkinson, and R. H. Baughman, "Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology", Science, 2004, 306, 1358-1361.  https://doi.org/10.1126/science.1104276
  103. T. Zhou, Y. Niu, Z. Li, H. Li, Z. Yong, K. Wu, Y. Zhang, and Q. Li, "The Synergetic Relationship Between the Length and Orientation of Carbon Nanotubes in Direct Spinning of High-strength Carbon Nanotube Fibers", Mater. Des., 2021, 203, 109557. 
  104. E. C. Igbokwe, M. O. Daramola, and S. E. Iyuke, "Production of Carbon Nanotube Yarns Via Floating Catalyst Chemical Vapor Deposition: Effect of Synthesis Temperature on Electrical Conductivity", Results in Physics, 2019, 15, 102705. 
  105. L. Ping, P. X. Hou, C. Liu, and H. M. Cheng, "Vertically Aligned Carbon Nanotube Arrays as a Thermal Interface Material", APL Mater., 2019, 7, 020902. 
  106. S. Zhang, N. Nguyen, B. Leonhardt, C. Jolowsky, A. Hao, J. G. Park, and R. Liang, "Carbon-nanotube-based Electrical Conductors: Fabrication, Optimization, and Applications", Adv. Electr. Mater., 2019, 5, 1800811. 
  107. T. Hajilounezhad, R. Bao, K. Palaniappan, F. Bunyak, P. Calyam, and M. R. Maschmann, "Predicting Carbon Nanotube Forest Attributes and Mechanical Properties Using Simulated Images and Deep Learning", NPJ Computational Materials, 2021, 7, 134. 
  108. X. Zhang, W. Lu, G. Zhou, and Q. Li, "Understanding the Mechanical and Conductive Properties of Carbon Nanotube Fibers for Smart Electronics", Adv. Mater., 2020, 32, 1-21.  https://doi.org/10.1002/adma.201902028
  109. S. Ryu, J. Hwang, and S. Hong, "Synthesis and Characterization of Vertically Aligned Carbon Nanotube Forest for Solid State Fiber Spinning", J. Nanosci. Nanotechnol., 2012, 12, 5653- 5657.  https://doi.org/10.1166/jnn.2012.6339
  110. S. Huang, X. Du, M. Ma, and L. Xiong, "Recent Progress in the Synthesis and Applications of Vertically Aligned Carbon Nanotube Materials", Nanotechnol. Rev., 2021, 10, 1592-1623.  https://doi.org/10.1515/ntrev-2021-0102
  111. Q. Liu, X. Shi, Q. Jiang, R. Li, S. Zhong, and R. Zhang, "Growth Mechanism and Kinetics of Vertically Aligned Carbon Nanotube Arrays", Ecomat, 2021, 3, 1-18.  https://doi.org/10.1002/eom2.12118
  112. Z. Yin, H. Wang, M. Jian, Y. Li, K. Xia, M. Zhang, C. Wang, Q. Wang, M. Ma, Q. Zheng, and Y. Zhang, "Extremely Black Vertically Aligned Carbon Nanotube Arrays for Solar Steam Generation", ACS Appl. Mater. Interfaces, 2017, 9, 28596-28603.  https://doi.org/10.1021/acsami.7b08619
  113. Z. Lin, Z. Li, K. Moon, Y. Fang, Y. Yao, L. Li, and C. Wong, "Robust Vertically Aligned Carbon Nanotube-carbon Fiber Paper Hybrid As Versatile Electrodes for Supercapacitors and Capacitive Deionization", Carbon, 2013, 63, 547-553.  https://doi.org/10.1016/j.carbon.2013.07.033
  114. H. M. Duong, F. Gong, P. Liu, and T. Q. Tran in "Advanced Fabrication and Properties of Aligned Carbon Nanotube Composites: Experiments and Modeling" (M. R. Berber and I. H. Hafez Eds.), Ch. 2, Intechopen, 2016. 
  115. C. Zhu, C. Cheng, Y. H. He, L. Wang, T. L. Wong, K. K. Fung, and N. Wang, "A Self-entanglement Mechanism for Continuous Pulling of Carbon Nanotube Yarns", Carbon, 2011, 49, 4996-5001.  https://doi.org/10.1016/j.carbon.2011.07.014
  116. C. Jayasinghe, T. Amstutz, M. Schulz, and, V. Shanov, "Improved Processing of Carbon Nanotube Yarn", J. Nanomater., 2013. 
  117. C. D. Tran, W. Humphries, S. M. Smith, C. Huynh, and S. Lucas, "Improving the Tensile Strength of Carbon Nanotube Spun Yarns Using a Modified Spinning Process", Carbon, 2009, 47, 2662-2670.  https://doi.org/10.1016/j.carbon.2009.05.020
  118. X. Zhang, Q. Li, Y. Tu, Y. Li, J. Y. Coulter, L. Zheng, Y. Zhao, Q. Jia, D. E. Peterson, and Y. Zhu, "Strong Carbon-nanotube Fibers Spun from Long Carbon-nanotube Arrays", Small, 2007, 3, 244-248.  https://doi.org/10.1002/smll.200600368
  119. X. Lepro, M. Lima, and R. Baughman, "Spinnable Carbon Nanotube Forests Grown on Thin, Flexible Metallic Substrates", Carbon, 2010, 48, 3621-3627.  https://doi.org/10.1016/j.carbon.2010.06.016
  120. Y. L. Li, I. A. Kinloch, and A. H. Windle, "Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis", Science, 2004, 304, 276-278.  https://doi.org/10.1126/science.1094982
  121. J. N. Wang, X. G. Luo, T. Wu, and Y. Chen, "High-strength Carbon Nanotube Fibre-like Ribbon with High Ductility and High Electrical Conductivity", Nat. Commun., 2014, 5, 1-8.  https://doi.org/10.1038/ncomms4848
  122. B. Aleman, V. Reguero, B. Mas, and J. J. Vilatela, "Strong Carbon Nanotube Fibers by Drawing Inspiration from Polymer Fiber Spinning", ACS Nano, 2015, 9, 7392-7398.  https://doi.org/10.1021/acsnano.5b02408
  123. D. Janas and K. K. Koziol, "Carbon Nanotube Fibers and Films: Synthesis, Applications and Perspectives of the Direct-spinning Method", Nanoscale, 2016, 8, 19475-19490.  https://doi.org/10.1039/C6NR07549E
  124. L. Weller, F. R. Smail, J. A. Elliott, A. H. Windle, A. M. Boies, and S. Hochgreb, "Mapping the Parameter Space for Direct-spun Carbon Nanotube Aerogels", Carbon, 2019, 146, 789-812.  https://doi.org/10.1016/j.carbon.2019.01.091
  125. S. Liu, Y. Zhang, Y. Lin, Z. Zhao, and Q. Li, "Tailoring the Structure and Nitrogen Content of Nitrogen-doped Carbon Nanotubes by Water-assisted Growth", Carbon, 69, 2014, 247-254.  https://doi.org/10.1016/j.carbon.2013.12.023
  126. T. Fujimori, D. Yamashita, Y. Kishibe, M. Sakai, H. Inoue, T. Onoki, J. Otsuka, D. Tanioka, T. Hikata, S. Okubo, K. Akada, and J. I. Fujita, "One Step Fabrication of Aligned Carbon Nanotubes Using Gas Rectifier", Sci. Rep., 2022, 12, 1-9.  https://doi.org/10.1038/s41598-021-99269-x
  127. Y. Liao, H. Jiang, N. Wei, P. Laiho, Q. Zhang, S. A. Khan, and E. I. Kauppinen, "Direct Synthesis of Colorful Single-walled Carbon Nanotube Thin Films", J. Am. Chem. Soc., 2018, 140, 9797-9800.  https://doi.org/10.1021/jacs.8b05151
  128. T. Zhou, Y. Niu, Z. Li, H. Li, Z. Yong, K. Wu, Y. Zhang, and Q. Li, "The Synergetic Relationship Between the Length and Orientation of Carbon Nanotubes in Direct Spinning of High-strength Carbon Nanotube Fibers", Mater. Des., 2021, 203, 109557. 
  129. S. Zeng, H. Chen, H. Wang, X. Tong, M. Chen, J. Di, and Q. Li, "Crosslinked Carbon Nanotube Aerogel Films Decorated with Cobalt Oxides for Flexible Rechargeable Zn-air Batteries", Small, 2017, 13, 1700518. 
  130. B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, and P. Poulin, "Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes", Science, 2000, 290, 1331-1334.  https://doi.org/10.1126/science.290.5495.1331
  131. N. Petchsang, M. P. Mcdonald, L. E. Sinks, and M. Kuno, "Light Induced Nanowire Assembly: The Electrostatic Alignment of Semiconductor Nanowires into Functional Macroscopic Yarns", Adv. Mater., 2013, 25, 601-605.  https://doi.org/10.1002/adma.201202722
  132. X. Li, M. Guo, and C. Chen, "Graphdiyne: from Preparation to Biomedical Applications", Chem. Res. Chinese Univ., 2021, 37, 1176-1194.  https://doi.org/10.1007/s40242-021-1343-8
  133. D. E. Tsentalovich, R. J. Headrick, F. Mirri, J. Hao, N. Behabtu, C. C. Young, and M. Pasquali, "Influence of Carbon Nanotube Characteristics on Macroscopic Fiber Properties", ACS Appl. Mater. Interfaces, 2017, 9, 36189-36198.  https://doi.org/10.1021/acsami.7b10968
  134. J. L. Lowery and M. J. Green, "Safer Carbon Nanotube Processing Expands Industrial and Consumer Applications", Sci. Adv., 2022, 8, 2021-2023.  https://doi.org/10.1126/sciadv.abq4853
  135. G. Sun, Y. Zhang, and L. Zheng, "Fabrication of Microscale Carbon Nanotube Fibers", J. Nanomat., 2012, 2012, 506209. 
  136. S. Ramesh, L. M. Ericson, V. A. Davis, R. K. Saini, C. Kittrell, M. Pasquali, W. E. Billups, W. W. Adams, R. H. Hauge, and R. E. Smalley, "Dissolution of Pristine Single Walled Carbon Nanotubes in Superacids by Direct Protonation", J. Phys. Chem. B, 2004, 108, 8794-8798.  https://doi.org/10.1021/jp036971t
  137. S. A. Hodge, S. Fogden, C. A. Howard, N. T. Skipper, and M. S. P. Shaffer, "Electrochemical Processing of Discrete Single-walled Carbon Nanotube Anions", ACS Nano, 2013, 7, 1769-1778.  https://doi.org/10.1021/nn305919p
  138. G. Wang, S.-K. Kim, M. C. Wang, T. Zhai, S. Munukutla, G. S. Girolami, P. J. Sempsrott, S. Nam, P. V. Braun, and J. W. Lyding, "Enhanced Electrical and Mechanical Properties of Chemically Cross-linked Carbon-nanotube-based Fibers and Their Application in High-performance Supercapacitors", ACS Nano, 2020, 14, 632-639.  https://doi.org/10.1021/acsnano.9b07244
  139. K. Mukai, K. Asaka, X. Wu, T. Morimoto, T. Okazaki, T. Saito, and M. Yumura, "Wet Spinning of Continuous Polymer-free Carbon-nanotube Fibers with High Electrical Conductivity and Strength", Appl. Phys. Exp., 2016, 9. 
  140. K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, and A. Windle, "High-performance Carbon Nanotube Fiber", Science, 2007, 318, 1892-1895.  https://doi.org/10.1126/science.1147635
  141. A. Lekawa-Raus, J. Patmore, L. Kurzepa, J. Bulmer, and K. Koziol, "Electrical Properties of Carbon Nanotube Based Fibers and Their Future Use in Electrical Wiring", Adv. Funct. Mater., 2014, 24, 3661-3682.  https://doi.org/10.1002/adfm.201303716
  142. C. Zhang, S. Yanhui, H. Zhang, B. Lv, J. Qiao, N. Yu, Y. Zhang, J. Di, and Q. Li, "Mechanical Properties of Carbon Nanotube Fibers at Extreme Temperatures", Nanoscale, 2019, 11, 4585-4590.  https://doi.org/10.1039/C8NR09637F
  143. J. Liang, Y. Gu, Z. Zhang, S. Wang, and M. Li, "Densification of Chlorine-doped Continuous CNT Sheet/Polyvinylidene Fluoride Sandwich Film and Improvement of the Mechanical and Dielectric Properties", Nanotechnology, 2018, 29, 03570. 
  144. K. Liu, Y. Sun, R. Zhou, H. Zhu, J. Wang, L. Liu, S. Fan, and K. Jiang, "Carbon Nanotube Yarns with High Tensile Strength Made by a Twisting and Shrinking Method", Nanotechnology, 2010, 21, 045708. 
  145. A. Ghosh and P. Mal, "Testing of Fibres, Yarns and Fabrics and Their Recent Developments", Fibres to Smart Textiles, 2019, pp.221-256. 
  146. Y. Dini, J. Faure-Vincent, and J. Dijon, "How to Overcome the Electrical Conductivity Limitation of Carbon Nanotube Yarns Drawn from Carbon Nanotube Arrays", Carbon, 2019, 144, 301-311.  https://doi.org/10.1016/j.carbon.2018.12.041
  147. N. Tajima, T. Watanabe, T. Morimoto, K. Kobashi, K. Mukai, K. Asaka, and T. Okazaki, "Nanotube Length and Density Dependences of Electrical and Mechanical Properties of Carbon Nanotube Fibres Made by Wet Spinning", Carbon, 2019, 152, 1-6.  https://doi.org/10.1016/j.carbon.2019.05.062
  148. O. Weizman, J. Mead, H. Dodiuk, and S. Kenig, "Electrical Properties Enhancement of Carbon Nanotube Yarns by Cyclic Loading", Molecules, 2020, 25, 4824. 
  149. F. Meng, J. Zhao, Y. Ye, X. Zhang, and Q. Li, "Carbon Nanotube Fibers for Electrochemical Applications: Effect of Enhanced Interfaces by an Acid Treatment", Nanoscale, 2012, 4, 7464-7468.  https://doi.org/10.1039/c2nr32332j
  150. M. Miao, "Electrical Conductivity of Pure Carbon Nanotube Yarns", Carbon, 2011, 49, 3755-3761.  https://doi.org/10.1016/j.carbon.2011.05.008
  151. M. Zu, Q. Li, Y. Zhu, M. Dey, G. Wang, W. Lu, J. M. Deitzel, J. W. Gillespie, J. H. Byun, and T. W. Chou, "The Effective Interfacial Shear Strength of Carbon Nanotube Fibers in an Epoxy Matrix Characterized by a Microdroplet Test", Carbon, 2012, 50, 1271-1279.  https://doi.org/10.1016/j.carbon.2011.10.047
  152. H. B. Abdullah, R. Irmawati, I. Ismail, and N. A. Yusof, "Utilization of Waste Engine Oil for Carbon Nanotube Aerogel Production Using Floating Catalyst Chemical Vapor Deposition", J. Clean.Prod., 2020, 261, 121188. 
  153. P. Dariyal, A. K. Arya, B. P. Singh, and S. R. Dhakate, "A Review on Conducting Carbon Nanotube Fibers Spun via Direct Spinning Technique", J. Mater. Sci., 2021, 56, 1087. 
  154. X. Liu, W. Lu, O. M. Ayala, L. P. Wang, A. M. Karlsson, Q. Yang, and T. W. Chou, "Microstructural Evolution of Carbon Nanotube Fibers: Deformation and Strength Mechanism", Nanoscale, 2013, 5, 2002-2008.  https://doi.org/10.1039/c3nr32681k
  155. P. Wang, M. Kim, Z. Peng, C.-F. Sun, J. Mok, A. Lieberman, and Y. Wang, "Superacid-surfactant Exchange: Enabling Nonde-structive Dispersion of Full-length Carbon Nanotubes in Water", ACS Nano, 2017, 11, 9231-9238.  https://doi.org/10.1021/acsnano.7b04429
  156. H.-Z. Geng, K. K. Kim, K. P. So, Y. S. Lee, Y. Chang, and Y. H. Lee, "Effect of Acid Treatment on Carbon Nanotube-based Flexible Transparent Conducting Films", J. Am. Chem. Soc., 2007, 129, 7758-7759.  https://doi.org/10.1021/ja0722224
  157. M. Hada, K. Makino, H. Inoue, T. Hasegawa, H. Masuda, H. Suzuki, K. Shirasu, T. Nakagawa, T. Seki, J. Matsuo, T. Nishikawa, Y. Yamashita, S. Koshihara, V. Stolojan, S. R. P. Silva, J. Fujita, Y. Hayashi, S. Maeda, and M. Hase, "Phonon Transport Probed at Carbon Nanotube Yarn/sheet Boundaries by Ultrafast Structural Dynamics", Carbon, 2020, 170, 165-173.  https://doi.org/10.1016/j.carbon.2020.08.026
  158. A. Ramazani, A. Reihani, A. Soleimani, R. Larson, and V. Sundararaghavan, "Molecular Dynamics Study of Phonon Transport in Graphyne Nanotubes", Carbon, 2017, 123, 635-644.  https://doi.org/10.1016/j.carbon.2017.07.093
  159. P. Wang, R. Xiang, and S. Maruyama, "Thermal Conductivity of Carbon Nanotubes and Assemblies", Adv. Heat Transfer, 2018, 50, 43-122.  https://doi.org/10.1016/bs.aiht.2018.07.004
  160. S. Saether, M. F. Erichsen, S. Xiao, Z. Zhang, A. Lervik, and J. He, "Phonon Thermal Transport in Copper: the Effect of Size, Crystal Orientation, and Grain Boundaries", AIP Adv., 2022, 12, 065301. 
  161. A. Aitkaliyeva, D. Chen, and L. Shao, "Phonon Transport Assisted by Inter-tube Carbon Displacements in Carbon Nanotube Mats", Sci. Rep., 2013, 3, 1-5.  https://doi.org/10.1038/srep02774
  162. Q. Chen and Y. Huang, "A Practical Dimensionless Equation for the Thermal Conductivity of Carbon Nanotubes and CNT Arrays", AIP Adv., 2014, 4, 057115. 
  163. E. Mayhew and V. Prakash, "Thermal Conductivity of High Performance Carbon Nanotube Yarn-like Fibers", J. Appl. Phys., 2014, 115, 174306. 
  164. C. Zhang, Y. Song, H. Zhang, B. Lv, J. Qiao, N. Yu, Y. Zhang, J. Di, and Q. Li, "Mechanical Properties of Carbon Nanotube Fibers at Extreme Temperatures", Nanoscale, 2019, 11, 4585-4590.  https://doi.org/10.1039/C8NR09637F
  165. J. Foroughi, G. M. Spinks, D. Antiohos, A. Mirabedini, S. Gambhir, G. Wallace, S. Ghorbani, G. Peleckis, M. Kozlov, M. Lima, and R. Baughman, "Highly Conductive Carbon Nanotube-graphene Hybrid Yarn", Adv. Funct. Mater., 2014, 24, 5859-5865.  https://doi.org/10.1002/adfm.201401412
  166. N. Behabtu, C. Young, D. Tsentalovich, O. Kleinerman, X. Wang, A. Ma, E. Bengio, R. Waarbe, J. Jong, R. Hoogerwerf, S. Fairchild, J. Ferguson, B. Maruyama, J. Kono, Y. Talmon, Y. Cohen, M. Otto, and M. Pasquali, "Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity", Science, 2013, 339, 182-186.  https://doi.org/10.1126/science.1228061
  167. L. M. Ericson, H. Fan, H. Peng, V. A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. A. N. G. Parravasquez, M. J. Kim, S. Ramesh, R. K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W. W. Adams, W. E. Billups, M. Pasquali, W.-F. Hwang, R. H. Hauge, J. E. Fischer, and R. E. Smalley, "Macroscopic, Neat, Single-walled Carbon Nanotube Fibers", Science, 2004, 305, 1447-1450.  https://doi.org/10.1126/science.1101398
  168. V. A. Davis, L. M. Ericson, A. N. G. Parra-Vasquez, H. Fan, Y. Wang, V. Prieto, J. A. Longoria, S. Ramesh, R. K. Saini, C. Kittrell, W. E. Billups, W. W. Adams, R. H. Hauge, R. E. Smalley, and M. Pasquali, "Phase Behavior and Rheology of Swnts in Superacids", Macromolecules, 2004, 37, 154-160.  https://doi.org/10.1021/ma0352328
  169. J.-H. Lee, U. Paik, J.-Y. Choi, K. K. Kim, S.-M. Yoon, J. Lee, B.-K. Kim, J. M. Kim, M. H. Park, C. W. Yang, K. H. An, and Y. H. Lee, "Dispersion Stability of Single-walled Carbon Nanotubes Using Nafion in Bisolvent", J. Phys. Chem. C, 2007, 111, 2477-2483.  https://doi.org/10.1021/jp0670485
  170. C. Jayasinghe, S. Chakrabarti, M. J. Schulz, and V. Shanov, "Spinning Yarn from Long Carbon Nanotube Arrays", J. Mater. Res., 2011, 26, 645-651.  https://doi.org/10.1557/jmr.2010.91
  171. H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, and P. M. Ajayan, "Direct Synthesis of Long Single-walled Carbon Nanotube Strands", Science, 2002, 296, 884-886.  https://doi.org/10.1126/science.1066996
  172. S. G. Kim, G. M. Choi, H. D. Jeong, D. Lee, S. Kim, K. H. Ryu, S. Lee, J. Kim, J. Y. Hwang, N. D. Kim, D.-Y. Kim, H. S. Lee, and B.-C. Kue, "Hierarchical Structure Control in Solution Spinning for Strong and Multifunctional Carbon Nanotube Fibers", Carbon, 2022, 196, 59-69.  https://doi.org/10.1016/j.carbon.2022.04.040
  173. H. D. Jeong, S. G. Kim, G. M. Choi, M. Park, B. C. Ku and H. S. Lee, "Theoretical and Experimental Investigation of the Wet-spinning Process for Mechanically Strong Carbon Nanotube Fibers", Chem. Eng. J., 2021, 412, 128650. 
  174. C. Xiang, N. Behabtu, Y. Liu, H. G. Chae, C. C. Young, B. Genorio, D. E. Tsentalovich, C. Zhang, D. V. Kosynkin, J. R. Lomeda, C.-C. Hwang, S. Kumar, M. Pasquali, and J. M. Tour, "Graphene Nanoribbons as an Advanced Precursor for Making Carbon Fiber", ACS Nano, 2013, 7, 1628-1637.  https://doi.org/10.1021/nn305506s
  175. S. Y. Cho, H. Yu, J. Choi, H. Kang, S. Park, J. S. Jang, H. J. Hong, I. D. Kim, S. K. Lee, H. S. Jeong, and H. T. Jung, "Continuous Meter-scale Synthesis of Weavable Tunicate Cellulose/carbon Nanotube Fibers for High-performance Wearable Sensors", ACS Nano, 2019, 13, 9332-9341.  https://doi.org/10.1021/acsnano.9b03971
  176. X. Rodiles, V. Reguero, M. Vila, B. Aleman, L. Arevalo, Fresno, F., V. A. de la Pena O'Shea, and J. J. Vilatel, "Carbon Nanotube Synthesis and Spinning as Macroscopic Fibers Assisted by the Ceramic Reactor Tube", Sci. Rep., 2019, 9, 1-12.  https://doi.org/10.1038/s41598-018-37186-2
  177. D. Janas, "Perfectly Imperfect: A Review of Chemical Tools for Exciton Engineering in Single-walled Carbon Nanotubes", Materials Horizons, 2020, 7, 2860-2881.  https://doi.org/10.1039/D0MH00845A
  178. N. M. Mubarak, E. C. Abdullah, N. S. Jayakumar, and J. N. Sahu, "An Overview on Methods for the Production of Carbon Nanotubes", J. Ind. Eng. Chem., 2014, 20, 1186-1197.  https://doi.org/10.1016/j.jiec.2013.09.001
  179. P. B. Castro and S. Caron, Carbon Nanotube Synthesis for Microsystems Applications, 2006. 
  180. M. A. Osman and D. Srivastava, "Temperature Dependence of the Thermal Conductivity of Single-wall Carbon Nanotubes", Nanotechnology, 2001, 12, 21-24.  https://doi.org/10.1088/0957-4484/12/1/305
  181. V. N. Khabashesku and M. X. Pulikkathara, "Chemical Modification of Carbon Nanotubes", Mendeleev Communications, 2006, 16, 61-66.  https://doi.org/10.1070/MC2006v016n02ABEH002316
  182. S. Tomita, T. Sakurai, H. Ohta, M. Fujii, and S. Hayashi, "Structure and Electronic Properties of Carbon Onions", J. Chem. Phys., 2001, 114, 7477-7482.  https://doi.org/10.1063/1.1360197
  183. R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, and R. J. Waite, "Nucleation and Growth of Carbon Deposits from the Nickel Catalyzed Decomposition of Acetylene", J. Catalysis, 1972, 26, 51-62.  https://doi.org/10.1016/0021-9517(72)90032-2
  184. R. T. K. Baker, P. S. Harris, R. B. Thomas, and R. J. Waite, "Formation of Filamentous Carbon from Iron, Cobalt and Chromium Catalyzed Decomposition of Acetylene", J. Catalysis, 1973, 30, 86-95.  https://doi.org/10.1016/0021-9517(73)90055-9
  185. T. A. Edison, Electric Lamp, US Patent, No. 223.898. 223, 3, 1880. 
  186. C. Pursell, "Incandescent Light Bulb", Usa. Iconic Designs, 2017, pp.118-121. 
  187. A. C. Society, "High Performance Carbon Fibers September 17, 2003. American Chemical Society, 2003. 
  188. W., Xie R. Zhang, R. J. Headrick, L. W. Taylor, S. Kooi, M. Pasquali, S. Muftu, and J. H. Lee, "Dynamic Strengthening of Carbon Nanotube Fibers Under Extreme Mechanical Impulses", Nano Lett., 2019, 19, 3519-3526.  https://doi.org/10.1021/acs.nanolett.9b00350
  189. J. J. Vilatela and A. H. Windle, "Yarn-like Carbon Nanotube Fibers", Adv. Mater., 2010, 22, 4959-4963.  https://doi.org/10.1002/adma.201002131
  190. J. C. Anike, K. Belay, and J. L Abot, "Effect of Twist on the Electromechanical Properties of Carbon Nanotube Yarns", Carbon, 2019, 142, 491-503.  https://doi.org/10.1016/j.carbon.2018.10.067
  191. C. D. Tran, "Dry Spinning Carbon Nanotubes Into Continuous Yarn: Progress", Processing and Applications. in Nanotube Superfiber Materials: Changing Engineering Design, Elsevier, 2013. 
  192. Y. Inoue in "Direct Dry Spinning of Millimeter-long Carbon Nanotube Arrays for Aligned Sheet and Yarn" (M. J. Schulz, V. N. Shanov, and Z. Yin Eds.), Nanotube Superfiber Materials, William Andrew Publishing, 2014, pp.389-414. 
  193. J. N. Wang, X. G. Luo, T. Wu, and Y. Chen, "High-strength Carbon Nanotube Fibre-like Ribbon with High Ductility and High Electrical Conductivity", Nat. Commun., 2014, 5, 1-8.  https://doi.org/10.1038/ncomms4848
  194. A. Clancy, D. B. Anthony, S. Fisher, H. Leese, C. Roberts, and M. Shaffer, "Reductive Dissolution of Supergrowth Carbon Nanotubes for Tougher Nanocomposites by Reactive Coagulation Spinning", Nanoscale, 2017, 9, 8764-8773.  https://doi.org/10.1039/C7NR00734E
  195. A. Ghemes, Y. Minami, J. Muramatsu, M. Okada, H. Mimura, and Y. Inoue, "Fabrication and Mechanical Properties of Carbon Nanotube Yarns Spun from Ultra-long Multi-walled Carbon Nanotube Arrays", Carbon, 2012, 50, 4579-4587.  https://doi.org/10.1016/j.carbon.2012.05.043
  196. Q. Liu, M. Li, Y. Gu, Y. Zhang, S. Wang, Q. Li, and Z. Zhang, "Highly Aligned Dense Carbon Nanotube Sheets Induced by Multiple Stretching and Pressing", Nanoscale, 2014, 6, 4338-4344.  https://doi.org/10.1039/C3NR06704A
  197. Y. Zhang and S. Han, "Carbon Nanotube Fibers Prepared by Activating Deactivated Iron Particles in Floating Catalyst Chemical Vapor Deposition Tail Gas", Medziagotyra, 2017, 23, 260-265.  https://doi.org/10.5755/j01.ms.23.3.17050
  198. J. Jia, J. Zhao, G. Xu, J. Di, Z. Yong, Y. Tao, C. Fang, Z. Zhang, X. Zhang, L. Zheng, and Q. Li, "A Comparison of the Mechanical Properties of Fibers Spun from Different Carbon Nanotubes", Carbon, 2011, 49, 1333-1339.  https://doi.org/10.1016/j.carbon.2010.11.054
  199. H. Mirbaha, P. Scardi, M. D'incau, S. Arbab, P. Nourpanah, and N. M. Pugno, "Supramolecular Structure and Mechanical Properties of Wet-spun Polyacrylonitrile/carbon Nanotube Composite Fibers Influenced by Stretching Forces", Frontiers in Materials, 2020, 7, 1-13.  https://doi.org/10.3389/fmats.2020.00001
  200. Y. Zhang, G. Zou, S. K. Doorn, H. Htoon, L. Stan, M. E. Hawley, C. J. Sheehan, Y. Zhu, and Q. Jia, "Tailoring the Morphology of Carbon Nanotube Arrays: from Spinnable Forests to Undulating Foams", ACS Nano, 2009, 3, 2157-2162.  https://doi.org/10.1021/nn9003988
  201. Y. A. Kim, S. Aoki, K. Fujisawa, Y.-I. Ko, K.-S. Yang, C.-M. Yang, Y. C. Jung, T. Hayashi, M. Endo, M. Terrones, and M. S. Dresselhaus, "Defect-assisted Heavily and Substitutionally Boron-doped Thin Multiwalled Carbon Nanotubes Using High-temperature Thermal Diffusion", J. Phys. Chem. C, 2014, 118, 4454-4459.  https://doi.org/10.1021/jp410732r
  202. K. A. Shah and M. S. Parvaiz, "Negative Differential Resistance in Bn Co-doped Coaxial Carbon Nanotube Field Effect Transistor", Superlattices and Microstructures, 2016, 100, 375-380. https://doi.org/10.1016/j.spmi.2016.09.037
  203. J. Lee and M. Tieslau, "Panel Lm Unit Root Tests with Level and Trend Shifts", Economic Modelling, 2019, 80, 1-10.  https://doi.org/10.1016/j.econmod.2017.11.001
  204. M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, "Sorting Carbon Nanotubes by Electronic Structure Using Density Differentiation", Nat. Nanotechnol., 2006, 1, 60-65.  https://doi.org/10.1038/nnano.2006.52
  205. A. A. Green, M. C. Duch, and M. C. Hersam, "Isolation of Single-walled Carbon Nanotube Enantiomers by Density Differentiation", Nano Res., 2009, 2, 69-77.  https://doi.org/10.1007/s12274-009-9006-y
  206. X. Tu, S. Manohar, A. Jagota, and M. Zheng, "DNA Sequence Motifs for Structure-specific Recognition and Separation of Carbon Nanotubes", Nature, 2009, 460, 250-253.  https://doi.org/10.1038/nature08116
  207. M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson, and N. G. Tassi, "DNA-assisted Dispersion and Separation of Carbon Nanotubes", Nature Materials, 2003, 2, 338-342.  https://doi.org/10.1038/nmat877
  208. Ao, G., J. K. Streit, J. A. Fagan, and M. Zheng, "Differentiating Left- and Right-handed Carbon Nanotubes by DNA", J. Am. Chem. Soc., 2016, 138, 16677-16685.  https://doi.org/10.1021/jacs.6b09135
  209. Y. Maeda, S.-I. Kimura, M. Kanda, Y. Hirashima, T. Hasegawa, T. Wakahara, Y. Lian, T. Nakahodo, T. Tsuchiya, T. Akasaka, J. Lu, X. Zhang, Y. Yu, S. Nagase, S. Kazaoui, N. Minami, T. Shimizu, H. Tokumoto, and R. Saito, "Large-scale Separation of Metallic and Semiconducting Single-walled Carbon Nanotubes", J. Am. Chem. Soc., 2005, 127, 10287-10290.  https://doi.org/10.1021/ja051774o
  210. Y. J. Do, J. H. Lee, H. Choi, J. H. Han, C. H. Chung, M. G. Jeong, M. S. Strano, and W. J. Kim, "Manipulating Electron Transfer Between Single-walled Carbon Nanotubes and Diazonium Salts for High Purity Separation by Electronic Type", Chem. Mater., 2012, 24, 4146-4151.  https://doi.org/10.1021/cm302227t
  211. A. T. J. Dijon, "Carbon Nanotubes for Interconnects", Springer, 2017, pp.165-194. 
  212. B. Han, X. Xue, Y. Xu, Z. Zhao, E. Guo, C. Liu, L. Luo, and H. Hou, "Preparation of Carbon Nanotube Film with High Alignment and Elevated Density", Carbon, 2017, 122, 496-503.  https://doi.org/10.1016/j.carbon.2017.04.072
  213. Y. Dini, D. Rouchon, J. Faure-Vincent, and J. Dijon, "Large Improvement of CNT Yarn Electrical Conductivity by Varying Chemical Doping and Annealing Treatment", Carbon, 2020, 156, 38-48.  https://doi.org/10.1016/j.carbon.2019.09.022
  214. J. F. Niven, M. B. Johnson, S. M. Juckes, M. A. White, N. T. Alvarez, and V. Shanov, "Influence of Annealing on Thermal and Electrical Properties of Carbon Nanotube Yarns", Carbon, 2016, 99, 485-490.  https://doi.org/10.1016/j.carbon.2015.12.014
  215. A. Nieuwoudt and Y. Massoud, "On the Optimal Design, Performance, and Reliability of Future Carbon Nanotube-based Interconnect Solutions", IEEE Transactions on Electron Devices, 2008, 55, 2097-2110.  https://doi.org/10.1109/TED.2008.926733
  216. M. Scholz, Y. Hayashi, V. Eckert, V. Khavrus, A. Leonhardt, B. Buchner, M. Mertig, and S. Hampel, "Systematic Investigations of Annealing and Functionalization of Carbon Nanotube Yarns", Molecules, 2020, 25, 1144. 
  217. X. Zhang, M. De Volder, W. Zhou, L. Issman, X. Wei, A. Kaniyoor, J. Terrones Portas, F. Smail, Z. Wang, Y. Wang, H. Liu, W. Zhou, J. Elliott, S. Xie, and A. Boies, "Simultaneously Enhanced Tenacity, Rupture Work, and Thermal Conductivity of Carbon Nanotube Fibers by Raising Effective Tube Portion", Sci. Adv., 2023, 8, eabq3515. 
  218. L. Wang, L. Zhu, M. T. Bernards, S. Chen, H. Sun, X. Guo, W. Xue, Y. Cui, and D. Gao, "Dendrimer-based Biocompatible Zwitterionic Micelles for Efficient Cellular Internalization and Enhanced Antitumor Effects", ACS Appl. Polym. Mater., 2020, 2, 159-171.  https://doi.org/10.1021/acsapm.9b00026
  219. Z. Tang, S. Jia, F. Wang, C. Bian, Y. Chen, Y. Wang, and B. Li, "Highly Stretchable Core-sheath Fibers Via Wet-spinning for Wearable Strain Sensors", ACS Appl. Mater. Interfaces, 2018, 10, 6624-6635.  https://doi.org/10.1021/acsami.7b18677
  220. D. Lee, S. G. Kim, S. Hong, C. Madrona, Y. Oh, M. Park, N. Komatsu, L. W. Taylor, B. Chung, J. Kim, J. Y. Hwang, J. Yu, D. S. Lee, H. S. Jeong, N. H. You, N. D. Kim, D. Y. Kim, H. S. Lee, K. H. Lee, J. Kono, G. Wehmeyer, M. Pasquali, J. J. Vilatela, S. Ryu, and B. C. Ku, "Ultrahigh Strength, Modulus, and Conductivity of Graphitic Fibers by Macromolecular Coalescence", Sci. Adv., 2022, 8, 1-9.  https://doi.org/10.1126/sciadv.abn0939
  221. L. W. Taylor, O. S. Dewey, R. J. Headrick, N. Komatsu, N. M. Peraca, G. Wehmeyer, J. Kono, and M. Pasquali, "Improved Properties, Increased Production, and the Path to Broad Adoption of Carbon Nanotube Fibers", Carbon, 2021, 171, 689-694.  https://doi.org/10.1016/j.carbon.2020.07.058
  222. J. Lee, D. M. Lee, Y. Jung, J. Park, H. S. Lee, Y. K. Kim, C. R. Park, H. S. Jeong, and S. M. Kim, "Direct Spinning and Densification Method for High-performance Carbon Nanotube Fibers", Nat. Commun., 2019, 10, 1-10.  https://doi.org/10.1038/s41467-018-07882-8
  223. G. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, and J. Lian, "Highly Thermally Conductive and Mechanically Strong Graphene Fibers", Science, 2015, 349, 1083-1087.  https://doi.org/10.1126/science.aaa6502
  224. W. Xu, Y. Chen, H. Zhan, and J. N. Wang, "High-strength Carbon Nanotube Film from Improving Alignment and Densification", Nano Lett., 2016, 16, 946-952.  https://doi.org/10.1021/acs.nanolett.5b03863
  225. E. Gao, W. Lu, and Z. Xu, "Strength Loss of Carbon Nanotube Fibers Explained in a Three-level Hierarchical Model", Carbon, 2018, 138, 134-142.  https://doi.org/10.1016/j.carbon.2018.05.052
  226. Y. Bai, R. Zhang, X. Ye, Z. Zhu, H. Xie, B. Shen, D. Cai, B. Liu, C. Zhang, Z. Jia, S. Zhang, X. Li, and F. Wei, "Carbon Nanotube Bundles with Tensile Strength over 80 GPa", Nat. Nanotechnol., 2018, 13, 589-595.  https://doi.org/10.1038/s41565-018-0141-z
  227. Y. Bai, H. Yue, J. Wang, B. Shen, S. Sun, S. Wang, H. Wang, X. Li, Z. Xu, R. Zhang, and F. Wei, "Super-durable Ultralong Carbon Nanotubes", Science, 2020, 369, 1104-1106.  https://doi.org/10.1126/science.aay5220
  228. J. A. Lee, N. Li, C. S. Haines, K. J. Kim, X. Lepro, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, "Electrochemically Powered, Energy-conserving Carbon Nanotube Artificial Muscles", Adv. Mater., 2017, 29, 1-7.  https://doi.org/10.1002/adma.201700870
  229. X. Yang, J. Cui, K. Xue, Y. Fu, H. Li, and H. Yang, "Thermal Conductivity and Thermoelectric Properties in 3D Macroscopic Pure Carbon Nanotube Materials", Nanotechnol. Rev., 2021, 10, 178-186. https://doi.org/10.1515/ntrev-2021-0013