DOI QR코드

DOI QR Code

A Study on the PM2.5 forcasting Method in Busan Using Deep Neural Network

DNN을 활용한 부산지역 초미세먼지 예보방안

  • Woo-Gon Do (Busan Metropolitan City Institute of Health and Environment) ;
  • Dong-Young Kim (Busan Metropolitan City Institute of Health and Environment) ;
  • Hee-Jin Song (Busan Metropolitan City Institute of Health and Environment) ;
  • Gab-Je Cho (Busan Metropolitan City Institute of Health and Environment)
  • 도우곤 (부산광역시 보건환경연구원) ;
  • 김동영 (부산광역시 보건환경연구원) ;
  • 송희진 (부산광역시 보건환경연구원) ;
  • 조갑제 (부산광역시 보건환경연구원)
  • Received : 2023.08.16
  • Accepted : 2023.08.23
  • Published : 2023.08.31

Abstract

The purpose of this study is to improve the daily prediction results of PM2.5 from the air quality diagnosis and evaluation system operated by the Busan Institute of Health and Environment in real time. The air quality diagnosis and evaluation system is based on the photochemical numerical model, CMAQ (Community multiscale air quality modeling system), and includes a 3-day forecast at the end of the model's calculation. The photochemical numerical model basically has limitations because of the uncertainty of input data and simplification of physical and chemical processes. To overcome these limitations, this study applied DNN (Deep Neural Network), a deep learning technique, to the results of the numerical model. As a result of applying DNN, the r of the model was significantly improved. The r value for GFS (Global forecast system) and UM (Unified model) increased from 0.77 to 0.87 and 0.70 to 0.83, respectively. The RMSE (Root mean square error), which indicates the model's error rate, was also significantly improved (GFS: 5.01 to 6.52 ug/m3 , UM: 5.76 to 7.44 ug/m3 ). The prediction results for each concentration grade performed in the field also improved significantly (GFS: 74.4 to 80.1%, UM: 70.0 to 77.9%). In particular, it was confirmed that the improvement effect at the high concentration grade was excellent.

Keywords

References

  1. Abdullah, A. M., Ramly, Z. T. A., 2020, Development of multiple linear regression for particulate matter (PM10) forecasting during episodic transboundary haze event in Malaysia, Atmosphere, 11(289), 1-14. https://doi.org/10.3390/atmos11030289
  2. Bengio, Y., Simard, P., Frasconi, P., 1994, Learning long-term dependencies with gradient descent is difficult, IEEE trans. neural netw., 5(2), 157-166. https://doi.org/10.1109/72.279181
  3. Byun, D. W., Ching, J. K. S., 1999, Science algorithms of the EPA Models-3 Community Multiscale Air Quality(CMAQ) modeling system, U.S. Environmental Protection Agency(US EPA), EPA/600/R-99/030.
  4. Cha, J. W., Kim, J. Y., 2018, Development of data mining algorithm for implementation of fine dust numerical prediction model, J. Korea Inst. Inf. Commun. Eng., 22(4), 595-601.
  5. Cho, K. H., Lee, B. Y., Kwon, M. H., Kim, S. C., 2019, Air quality prediction using a deep neural network model, J. Korean Soc. Atmos. Environ., 35(2), 214-225. https://doi.org/10.5572/KOSAE.2019.35.2.214
  6. Choi, D. R., Koo, Y. S., 2013, An Evaluation of the influence of boundary conditions from GEOS-Chem on CMAQ Simulations over east Asia, J. Korean Soc. Atmos. Environ., 29(2), 186-198. https://doi.org/10.5572/KOSAE.2013.29.2.186
  7. Community Modeling and Analysis System, 2021, Sparse Matrix Operator Kerner Emissions Modeling System, https://www.cmascenter.org/smoke/.
  8. Dedovic, M. M., Avdakovic, S., Turkovic, I., Dautbasic, N., Konjic, T., 2016, Forecasting PM10 concentrations using neural networks and system for improving air quality, 2016 XI International Symposium on Telecommunications(BIHTEL), 1-6.
  9. Department for Environment Food & Rural Affairs, 2021, UK AIR, https://uk-air.defra.gov.uk/forecasting/?day=2# forecast_map.
  10. Diaz-Robles, J. A., Ortega, J. C., Fu, J. S., Reed, G. D., Chow, J. C., Watson, J. G., Moncada-Herrera, J. A., 2008, A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: The case of Temuco, Chile, Atmospheric Environ., 42(35), 8331-8340. https://doi.org/10.1016/j.atmosenv.2008.07.020
  11. Dutta, A., Jinsart, W., 2021, Air Pollution in Indian cities and comparison of MLR, ANN and CART Models for Predicting PM10 concentrations in Guwahati, India, Asian J. Atmospheric Environ., 15(1), 1-26. https://doi.org/10.5572/ajae.2020.131
  12. EPA, 2021, CMAQ: The Community Multiscale Air Quality Modeling System, https://www.epa.gov/cmaq.
  13. Goulier, L., Paas, B., Ehrnsperger, L., Klemm, O., 2020, Modelling of urban air pollutant concentrations with artificial neural networks using novel input variables, Int. J. Environ. Res. Public Health, 17(6), 2025.
  14. Jeon, S. H., Son, Y. S., 2018, Prediction of fine dust PM10 using a deep neural network model, Korean J. Appl. Stat., 31(2), 265-285.
  15. Jo, Y. J., Lee, H. J., Chang, L. S., Kim, C. H., 2017, Sensitivity study of the initial meteorological fields on the PM10 concentration predictions using CMAQ modeling, J. Korean Soc. Atmos. Environ., 33(6), 554-569. https://doi.org/10.5572/KOSAE.2017.33.6.554
  16. Joharestani, M. Z., Cao, C., Ni, X., Bashir, B., Talebiesfandarani, S., 2019, PM2.5 prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data, Atmosphere, 10(7), 373.
  17. Kim, J., Jang, Y. K., 2014, Uncertainty assessment for CAPSS emission inventory by DARS, J. Korean Soc. Atmos. Environ., 30(1), 26-36. https://doi.org/10.5572/KOSAE.2014.30.1.026
  18. Kitayamaa, K., Morinoa, Y., Yamajib, K., Chatania, S., 2019, Uncertainties in O3 concentrations simulated by CMAQ over Japan using four chemical mechanisms, Atmospheric Environ., 198, 448-462. https://doi.org/10.1016/j.atmosenv.2018.11.003
  19. Korea Environment Corporation, 2022, Airkorea, https://www.airkorea.or.kr/eng/.
  20. Korea Meteorological Administration, 2021, https://www.kma.go.kr/aboutkma/intro/supercom/index.jsp.
  21. Madhavi, A. E., Naresh, S., Kim, N. D., Jennifer, A. S., 2014, Development of an ANN-based air pollution forecasting system with explicit knowledge through sensitivity analysis, Atmospheric Pollut. Res., 5, 696-708. https://doi.org/10.5094/APR.2014.079
  22. McKendry, I. G., 2002, Evaluation of artificial neural networks for fine particulate pollution (PM10 and PM2.5) forecasting, J. Air Waste Manag. Assoc., 52(9), 1096-1101. https://doi.org/10.1080/10473289.2002.10470836
  23. MEICModel, 2021, Tracking anthropogenic emissions in china, http://meicmodel.org/.
  24. NCAR Research Data Archive, 2021, NCEP GFS 0.25 degree global forecast auxiliary grids historical archive, https://rda.ucar.edu/datasets/ds084.3/#description.
  25. Ministry of Earth Science, Govt. of India, Indian Institute of Tropical Meteorology, 2021, System of air quality and weather forecasting and research, http://safar.tropmet.res.in/map_data.php?for=current&city_id=1.
  26. Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., Hayasaka, T., 2007, An Asian emission inventory of anthropogenic emission sources for the period 1980-2020, Atmos. Chem. Phys., 7, 4419-4444. https://doi.org/10.5194/acp-7-4419-2007
  27. Ostro, B., Feng, W. Y., Broadwin, R., Green, S., Lipsett, M., 2007, The effects of components of fine particulate air pollution on mortality in California: results from CALFINE, Environ. Health Perspect., 115(1), 13-19. https://doi.org/10.1289/ehp.9281
  28. Perez, P., Reyes, J., 2002, Prediction of maximum of 24-h average of PM10 concentrations 30h in advance in Santiago, Chile, Atmospheric Environ., 36(28), 4555-4561. https://doi.org/10.1016/S1352-2310(02)00419-3
  29. Pope, C. A., Turner, M. C., Burnett, R. T., Jerrett, M., Gapstur, S. M., Diver, W. R., Krewski, D., Brook, R. D., 2015, Relationships between fine particulate air pollution, cardiometabolic disorders, and cardiovascular mortality, Circ. Res., 116(1), 108-115. https://doi.org/10.1161/CIRCRESAHA.116.305060
  30. Public health and environment research institute, 2021, https://heis.busan.go.kr/environmental/air006.aspx.
  31. Ramsundar, B., Zadeh, R. B., 2018, Tensorflow for deep learning: From linear regression to reinforcement learning, O'Reilly Media.
  32. Regional Emission inventory in ASia Data Download Site, 2021, https://www.nies.go.jp/REAS/index.html.
  33. Rybarczyk, Y., Zalakeviciute, R., 2018, Machine learning approaches for outdoor air quality modelling: a systematic review, Appl. Sci., 8(12), 2570.
  34. Sayeed, A., Choi, Y., Eslami1, E., Jung, J., Lops, Y., Salman, A. K., Lee, J. B., Park, H. J., Choi, M. H., 2021, A Novel CMAQ‑CNN hybrid model to forecast hourly surface‑ozone concentrations 14 days in advance, Sci. Rep., 11, 10891.
  35. Schmidhuber, J., 2015, Deep learning in neural networks: An overview, neural networks, 61, 85-117. https://doi.org/10.1016/j.neunet.2014.09.003
  36. Shahraiyni, H. T., Sodoudi, S., 2016, Statistical Modeling Approaches for PM10 prediction in urban areas; A review of 21st-century studies, Atmosphere, 7(2), 15.
  37. Shahriar, S. A., Kayes, I., Hasan, K., Salam, M. A., Chowdhury, S., 2020, Applicability of machine learning in modeling of atmospheric particle pollution in Bangladesh, Air Qual. Atmos. Health, 13, 1247-1256. https://doi.org/10.1007/s11869-020-00878-8
  38. Slini, T., Kaprara, A., Karatzas, K., Moussiopoulos, N., 2006, PM10 forecasting for Thessaloniki, Greece, Environ. Model. Softw., 21(4), 559-565. https://doi.org/10.1016/j.envsoft.2004.06.011
  39. UI-Saufie, A., Yahya, A., Ramli, N., Hamid, H., 2011, Comparison between multiple linear regression and feed forward back propagation neural network models for predicting PM10 concentration level based on gaseous and meteorological parameters, Int. J. Appl. Sci. Technol., 1(4), 42-49.
  40. WRF MODEL USERS' PAGE, 2021, https://www2.mmm.ucar.edu/wrf/users/.
  41. Yanga, X., Wua, Q., Zhaob, R., Cheng, H., He, H., Ma, Q., Wang, L., Luo, H., 2019, New method for evaluating winter air quality: PM2.5 assessment using Community Multi-Scale Air Quality Modeling (CMAQ) in Xi'an, Atmospheric Environ., 211, 18-28. https://doi.org/10.1016/j.atmosenv.2019.04.019