DOI QR코드

DOI QR Code

Effect of Li2CO3 Doping on Phase Transition and Piezoelectric Properties of 0.96K0.5Na0.5NbO3-0.04SrTiO3 Ceramics

0.96K0.5Na0.5NbO3-0.04SrTiO3 세라믹스의 상전이와 압전 특성에 대한 Li2CO3 도핑 효과

  • Jae Young Park (School of Materials Science and Engineering, University of Ulsan) ;
  • Trang An Duong (School of Materials Science and Engineering, University of Ulsan) ;
  • Sang Sub Lee (School of Materials Science and Engineering, University of Ulsan) ;
  • Chang Won Ahn (Department of Physics, University of Ulsan) ;
  • Byeong Woo Kim (Department of Electrical Engineering, University of Ulsan) ;
  • Hyoung-Su Han (School of Materials Science and Engineering, University of Ulsan) ;
  • Jae-Shin Lee (School of Materials Science and Engineering, University of Ulsan)
  • 박재영 (울산대학교 첨단소재공학부) ;
  • 즈엉 짱 안 (울산대학교 첨단소재공학부) ;
  • 이상섭 (울산대학교 첨단소재공학부) ;
  • 안창원 (울산대학교 물리학과) ;
  • 김병우 (울산대학교 전기전자공학과) ;
  • 한형수 (울산대학교 첨단소재공학부) ;
  • 이재신 (울산대학교 첨단소재공학부)
  • Received : 2023.06.08
  • Accepted : 2023.07.31
  • Published : 2023.09.01

Abstract

It was reported that a tetragonal phase can be stabilized with maintaining good piezoelectric properties when Na0.5K0.5NbO3 (KNN) is modified with 0.06 mol SrTiO3. However, such a high amount of SrTiO3 leads not only to poor sinterability but low Curie temperature (TC). To maintain high TC with good piezoelectric properties in KNN-based lead-free piezoelectric ceramics, this study investigates the effect of Li-doping on the dielectric and piezoelectric properties of 0.96Na0.5K0.5NbO3-0.04SrTiO3 (KNN-4ST) ceramics. As a result, the orthorhombic-tetragonal phase transition was observed at 2 mol% Li2CO3 modified KNN-4ST ceramics, whose TC, d33 and kp values are 328℃, 165pC/N and 0.33, respectively.

Keywords

Acknowledgement

본 연구는 한국수력원자력(주)과 지방자치단체(울산광역시)의 지원으로 수행된 연구임(2022).

References

  1. J. Koruza, A. J. Bell, T. Fromling, K. G. Webber, K. Wang, and J. Rodel, J. Materiomics, 4, 13 (2018). doi: https://doi.org/10.1016/j.jmat.2018.02.001 
  2. S. Zhang, R. Xia, and T. R. Shrout, J. Electroceram., 19, 251 (2007). doi: https://doi.org/10.1007/s10832-007-9056-z 
  3. C. H. Hong, H. P. Kim, B. Y. Choi, H. S. Han, J. S. Son, C. W. Ahn, and W. Jo, J. Materiomics, 2, 1 (2016). doi: https://doi.org/10.1016/j.jmat.2015.12.002 
  4. J. Rodel and J. F. Li, MRS Bull., 43, 576 (2018). doi: https://doi.org/10.1557/mrs.2018.181 
  5. J. F. Li, K. Wang, F. Y. Zhu, L. Q. Cheng, and F. Z. Yao, J. Am. Ceram. Soc., 96, 3677 (2013). doi: https://doi.org/10.1111/jace.12715 
  6. S. T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, and J. Rodel, Appl. Phys. Lett., 91, 112906 (2007). doi: https://doi.org/10.1063/1.2783200 
  7. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. Rossetti, Jr., and J. Rodel, Appl. Phys. Rev., 4, 041305 (2017). doi: https://doi.org/10.1063/1.4990046 
  8. B. T. Matthias, Phys. Rev., 75, 1771 (1949). doi: https://doi.org/10.1103/PhysRev.75.1771 
  9. B. T. Matthias and J. P. Remeika, Phys. Rev., 82, 727 (1951). doi: https://doi.org/10.1103/PhysRev.82.727 
  10. L. Egerton and D. M. Dillon, J. Am. Ceram. Soc., 42, 438 (1959). doi: https://doi.org/10.1111/j.1151-2916.1959.tb12971.x 
  11. R. E. Jaeger and L. Egerton, J. Am. Ceram. Soc., 45, 209 (1962). doi: https://doi.org/10.1111/j.1151-2916.1962.tb11127.x 
  12. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature, 432, 84 (2004). doi: https://doi.org/10.1038/nature03028 
  13. D. A. Ochoa, G. Esteves, J. L. Jones, F. Rubio-Marcos, J. F. Fernandez, and J. E. Garcia, Appl. Phys. Lett., 108, 142901 (2016). doi: https://doi.org/10.1063/1.4945593 
  14. X. Wang, J. Wu, B. Dkhil, B. Xu, X. Wang, G. Dong, G. Yang, and X. Lou, Appl. Phys. Lett., 110, 063904 (2017). doi: https://doi.org/10.1063/1.4976026 
  15. J. K. Kang, Y. H. Lee, D. J. Heo, H. Y. Lee, T. H. Dinh, and J. S. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 27, 292 (2014). doi: https://doi.org/10.4313/JKEM.2014.27.5.292 
  16. M. S. Chae, K. S. Lee, S. M. Koo, J. G. Ha, J. H. Jeon, and J. H. Koh, J. Electroceram., 30, 60 (2013). doi: https://doi.org/10.1007/s10832-012-9717-4 
  17. X. Zhao, X. Chao, D. Wu, P. Liang, and Z. Yang, J. Am. Ceram. Soc., 102, 3498 (2019). doi: https://doi.org/10.1111/jace.16189 
  18. Z. Y. Shen, K. Wang, and J. F. Li, Appl. Phys. A, 97, 911 (2009). doi: https://doi.org/10.1007/s00339-009-5358-0 
  19. D. Q. Xiao, J. G. Wu, L. Wu, J. G. Zhu, P. Yu, D. M. Lin, Y. W. Liao, and Y. Sun, J. Mater. Sci., 44, 5408 (2009). doi: https://doi.org/10.1007/s10853-009-3543-3 
  20. D. Lin, K. W. Kwok, and H.L.W. Chan, Appl. Phys. A, 91, 167 (2008). doi: https://doi.org/10.1007/s00339-007-4391-0 
  21. Y. Guo, K. I. Kakimoto, and H. Ohsato, Solid State Commun., 129, 279 (2004). doi: https://doi.org/10.1016/j.ssc.2003.10.026
  22. T. A. Duong, C. W. Ahn, B. W. Kim, M. R. Bafandeh, H. S. Han, and J. S. Lee, J. Electron. Mater., 51, 1490 (2022). doi: https://doi.org/10.1007/s11664-021-09420-7 
  23. R. Wang, R. J. Xie, K. Hanada, K. Matsusaki, H. Bando, and M. Itoh, Phys. Status Solidi A, 202, R57 (2005). doi: https://doi.org/10.1002/pssa.200510014 
  24. Y. Guo, K. I. Kakimoto, and H. Ohsato, Mater. Lett., 59, 241 (2005). doi: https://doi.org/10.1016/j.matlet.2004.07.057 
  25. N. Zhao, P. Liang, D. Wu, X. Chao, and Z. Yang, Ceram. Int., 45, 22991 (2019). doi: https://doi.org/10.1016/j.ceramint.2019.07.344 
  26. M. Matsubara, K. Kikuta, and S. Hirano, J. Appl. Phys., 97, 114105 (2005). doi: https://doi.org/10.1063/1.1926396 
  27. D. Dey and R. C. Bradt, J. Am. Ceram. Soc., 75, 2529 (1992). doi: https://doi.org/10.1111/j.1151-2916.1992.tb05607.x 
  28. N. Lei, M. Zhu, P. Yang, L. Wang, L. Wang, Y. Hou, and H. Yan, J. Appl. Phys., 109, 054102 (2011). doi: https://doi.org/10.1063/1.3555598 
  29. F. Fu, B. Shen, J. Zhai, Z. Xu, and X. Yao, J. Alloys Compd., 509, 7130 (2011). doi: https://doi.org/10.1016/j.jallcom.2011.04.029 
  30. Y. Guo, K. I. Kakimoto, and H. Ohsato, Jpn. J. Appl. Phys., 43, 6662 (2004). doi: https://doi.org/10.1143/JJAP.43.6662 
  31. H. C. Song, K. H. Cho, H. Y. Park, C. W. Ahn, S. Nahm, K. Uchino, S. H. Park, and H. G. Lee, J. Am. Ceram. Soc., 90, 1812 (2007). doi: https://doi.org/10.1111/j.1551-2916.2007.01698.x 
  32. X. Wang, X. Chao, P. Liang, L. Wei, and Z. Yang, Ceram. Int., 40, 9389 (2014). doi: https://doi.org/10.1016/j.ceramint.2014.02.008