DOI QR코드

DOI QR Code

Electrical Properties of Carbon-Based Hybrid Resistor Bonded with Carbon Nanotube Paste

탄소나노튜브 페이스트 접합에 의한 탄소계 복합저항체의 전기적 특성

  • Sunwoo Lee (Department of Electrical Engineering, Inha Technical College) ;
  • Eun Min Kim (Future Innovation Institute, Seoul National University)
  • 이선우 (인하공업전문대학 전기공학과) ;
  • 김은민 (서울대학교 미래혁신연구원)
  • Received : 2023.03.18
  • Accepted : 2023.07.07
  • Published : 2023.09.01

Abstract

A carbon-based hybrid resistor was fabricated using carbon nanotube (CNT) paste as an adhesive layer to establish electrically continuous ohmic contacts between CNT sheets and different CNT sheet or copper based metal alloy plates, and its electrical properties were evaluated. CNT sheets were fabricated using vacuum filtration with a CNT solution dispersed in isopropyl alcohol (IPA) solvent. The electrical characteristics of these carbon-based hybrid resistors were investigated. The CNT paste fulfilled the requirements for forming ohmic contacts between CNT sheets and metal alloy plates, which was attributed to the lowest work function difference and excellent wettability at the interface.

Keywords

Acknowledgement

이 논문은 한국전력공사 전력연구원의 지원[과제번호: R21XO01-7]에 의하여 연구되었음.

References

  1. K. W. Park, Journal of the Electric World / Monthly Magazine, Special Issues, 3, 63 (2014). 
  2. Y. J. Lee, J. S. Youn, S. C. Cho, and S. Y. Noh, J. Korean Inst. Electr. Electron. Mater. Eng., 33, 201 (2020). doi: https://doi.org/10.4313/JKEM.2020.33.3.201 
  3. E. M. Kim, M. R. Son, and C. Y. Kang, Trans. Korean Inst. Elect. Eng., 67, 1055 (2018). doi: https://doi.org/10.5370/KIEE.2018.67.8.1055 
  4. J. D. Choi. Trans. Korean Inst. Power Electron., 10, 403 (2005). UCI: G704-000449.2005.10.4.008  https://doi.org/10.4.008
  5. F. Zandman, P. R. Simon, and J. Szwarc, Resistor Theory and Technology (SciTech Publishing, Raleigh, NC, USA, 2002), p. 52. 
  6. S. Lee, E. M. Kim, and Y. Lim, Sci. Rep., 9, 7763 (2019). doi: https://doi.org/10.1038/s41598-019-44182-7 
  7. Y. Lim, E. M. Kim, S. W. Lee, J. R. Ahn, and S. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 32, 219 (2019). doi: https://doi.org/10.4313/JKEM.2019.32.3.219 
  8. F. Galliana, P. P. Capra, and E. Gasparotto, Measurement, 46, 1630 (2013). doi: https://doi.org/10.1016/j.measurement.2012.11.031 
  9. S. Yarlagadda, T. T. Hartley, and I. Husain, IEEE Trans. Ind. Appl., 49, 2720 (2013). doi: https://doi.org/10.1109/TIA.2013.2264794 
  10. J. Campos-Delgado, J. M. Romo-Herrera, X. Jia, D. A. Cullen, H. Muramatsu, Y. A. Kim, T. Hayashi, Z. Ren, D. J. Smith, Y. Okuno, T. Ohba, H. Kanoh, K. Kaneko, M. Endo, H. Terrones, M. S. Dresselhaus, and M. Terrones, Nano Lett., 8, 2773 (2008). doi: https://doi.org/10.1021/nl801316d 
  11. T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, Nature, 391, 62 (1998). doi: https://doi.org/10.1038/34145 
  12. M. Menon and D. Srivastava, Phys. Rev. Lett., 79, 4453 (1997). doi: https://doi.org/10.1103/PhysRevLett.79.4453 
  13. J. Zhao, J. Han, and J. P. Lu, Phys. Rev. B, 65, 193401 (2002). doi: https://doi.org/10.1103/PhysRevB.65.193401 
  14. S. C. Lim, J. H. Jang, D. J. Bae, G. H. Han, S. Lee, I. S. Yeo, and Y. H. Lee, Appl. Phys. Lett., 95, 264103 (2009). doi: https://doi.org/10.1063/1.3255016 
  15. J. H. Jang, Z. J. Wang, J. G. Kouong, G. Y. Gu, J. M. Park, W. I. Lee, and J. K. Park, J. Adhesion Interface, 10, 90 (2009).