DOI QR코드

DOI QR Code

Recent Research Trends in Touchscreen Readout Systems

최근 터치스크린 Readout 시스템의 연구 경향

  • Jun-Min Lee (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Ju-Won Ham (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Woo-Seok Jang (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Ha-Min Lee (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Sang-Mo Koo (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Jong-Min Oh (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Seung-Hoon Ko (Department of Electronic Materials Engineering, Kwangwoon University)
  • 이준민 (광운대학교 전자재료공학과) ;
  • 함주원 (광운대학교 전자재료공학과) ;
  • 장우석 (광운대학교 전자재료공학과) ;
  • 이하민 (광운대학교 전자재료공학과) ;
  • 구상모 (광운대학교 전자재료공학과) ;
  • 오종민 (광운대학교 전자재료공학과) ;
  • 고승훈 (광운대학교 전자재료공학과)
  • Received : 2023.07.05
  • Accepted : 2023.08.08
  • Published : 2023.09.01

Abstract

With the increasing demand for mobile devices featuring multi-touch operation, extensive research is being conducted on touch screen panel (TSP) Readout ICs (ROICs) that should possess low power consumption, compact chip size, and immunity to external noise. Therefore, this paper discusses capacitive touch sensors and their readout circuits, and it introduces research trends in various circuit designs that are robust against external noise sources. The recent state-of-the-art TSP ROICs have primarily focused on minimizing the impact of parasitic capacitance (Cp) caused by thin panel thickness. The large Cp can be effectively compensated using an area-efficient current compensator and Current Conveyor (CC), while a display noise reduction scheme utilizing a noise-antenna (NA) electrode significantly improves the signal-to-noise ratio (SNR). Based on these achievements, it is expected that future TSP ROICs will be capable of stable operation with thinner and flexible Touch Screen Panels (TSPs).

Keywords

Acknowledgement

This paper was supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0012451) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021R1F1A1062391, NRF2022R1F1A1074478).

References

  1. A. H. Anwer, N. Khan, M. Z. Ansari, S. S. Baek, H. Yi, S. Kim, S. M. Noh, and C. Jeong, Sensors, 22, 4460 (2022). doi: https://doi.org/10.3390/s22124460
  2. Y. Huh, S. W. Hong, S. H. Park, C. Shin, J. S. Bang, C. Park, S. Park, and G. H. Cho, IEEE J. Solid-State Circuits, 53, 1079 (2018). doi: https://doi.org/10.1109/JSSC.2017.2772803
  3. S. H. Ko, IEEE Sens. J., 20, 4778 (2020). doi: https://doi.org/10.1109/JSEN.2020.2966183
  4. S. H. Ko, Proc. 2019 Symposium on VLSI Circuits (IEEE, Kyoto, Japan, 2019) p. C218. doi: https://doi.org/10.23919/VLSIC.2019.8778125
  5. Y. Hu, L. Huang, W. Rieutort-Louis, J. Sanz-Robinson, S. Wagner, J. C. Sturm, and N. Verma, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, San Francisco, USA, 2014) p. 212. doi: https://doi.org/10.1109/ISSCC.2014.6757404
  6. T. G. Song, D. K. Kim, J. H. Cho. J. H. Lee, and H. S. Kim, IEEE J. Solid-State Circuits, 56, 3470 (2021). doi: https://doi.org/10.1109/JSSC.2021.3098732
  7. C. C. Enz and G. C. Temes, Proc. IEEE, 84, 1584 (1996). doi: https://doi.org/10.1109/5.542410
  8. H. Yoshizawa and G. C. Temes, IEEE Trans. Circuits Syst. I, 54, 193 (2007). doi: https://doi.org/10.1109/TCSI.2006.887454
  9. A. Bakker, K. Thiele, and J. H. Huijsing. IEEE J. Solid-State Circuits, 35, 1877 (2000). doi: https://doi.org/10.1109/4.890300
  10. J. S. An, S. J. Jung, S. K. Hong, and O. K. Kwon, IEEE Sens. J., 17, 803 (2016). doi: https://doi.org/10.1109/JSEN.2016.2636137
  11. H. Shin, S. Ko, H. Jang, I. Yun, and K. Lee, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (IEEE, San Francisco, USA, 2013). doi: https://doi.org/10.1109/ISSCC.2013.6487782
  12. J. Lee, H. Kim, J. Ham, and S. Ko, Micromachines, 13, 942 (2022). doi: https://doi.org/10.3390/mi13060942
  13. S. H. Park, H. S. Kim, J. S. Bang, G. H. Cho, and G. H. Cho, IEEE J. Solid-State Circuits, 52, 528 (2016). doi: https://doi.org/10.1109/JSSC.2016.2621020
  14. I. S. Yang and O. K. Kwon, IEEE Trans. Consum. Electron., 57, 1027 (2011). doi: https://doi.org/10.1109/TCE.2011.6018851
  15. M. Miyamoto, M. Hamaguchi, and A. Nagao, IEEE J. Solid-State Circuits, 50, 335 (2015). doi: https://doi.org/10.1109/JSSC.2014.2364092
  16. K. D. Kim, S. Kang, Y. K. Choi, K. H. Lee, C. H. Lee, J. C. Lee, M. Choi, K. Ko, J. Jung, N. Park, H. Park, and G. C. Hwang, 2014 Symposium on VLSI Circuits Digest of Technical Papers (IEEE, Honolulu, USA, 2014) p. 1. doi: https://doi.org/10.1109/VLSIC.2014.6858444
  17. Samsung Z Fold2 5G, Available online: https://www.samsung.com/us/smartphones/galaxy-z-fold2-5g/ (accessed on 1 June 2022).
  18. S. H. Ko and B. D. Yang, IEEE Trans. Circuits Syst. II, 66, 1321 (2018). doi: https://doi.org/10.1109/TCSII.2018.2888516
  19. M. G. Degrauwe, J. Rijmenants, E. A. Vittoz, and H. J. De Man, IEEE J. Solid-State Circuits, 17, 522 (1982). doi: https://doi.org/10.1109/JSSC.1982.1051769
  20. P. Perez-Nicoli, F. Veirano, P. C. Lisboa, and F. Silveira, 2015 IEEE 6th Latin American Symposium on Circuits & Systems (LASCAS) (IEEE, Montevideo, Uruguay, 2015) p. 1. doi: https://doi.org/10.1109/LASCAS.2015.7250462
  21. B. Huang and D. Chen, 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS) (IEEE, College Station, USA, 2014) p. 270. doi: https://doi.org/10.1109/MWSCAS.2014.6908404
  22. S. Byun, H. Lee, T. G. Song, J. Lee, J. Baek, G, Ha, S. Baek, Y. Kim, W. Jung, H. W. Lim, S. Kim, and J. Y. Lee, 2023 IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, San Francisco, USA, 2023) p. 386. doi: https://doi.org/10.1109/ISSCC42615.2023.10067374