DOI QR코드

DOI QR Code

A Study on the bioactive surface modification of PEEK intervertebral fusion cage using various coating techniques

다양한 코팅 처리에 의한 PEEK 추간체유합보형재의 생체 활성 표면에 관한 연구

  • Su-Bin Noh (Department of Healthcare Engineering, Jeonbuk National University) ;
  • Su-Zy Park (Medical Device Development Center, Osong Medical Innovation Foundation) ;
  • Mun-Hwan Lee (Medical Device Development Center, Osong Medical Innovation Foundation)
  • 노수빈 (전북대학교 헬스케어공학과) ;
  • 박수지 (오송첨단의료산업진흥재단 첨단의료기기개발지원센터) ;
  • 이문환 (오송첨단의료산업진흥재단 첨단의료기기개발지원센터)
  • Received : 2023.07.30
  • Accepted : 2023.08.17
  • Published : 2023.08.31

Abstract

In this study, the surface of Polyetheretherketone (PEEK) disks was modified to have a hydrophilic surface by applying a coating of Polyethylene glycol (PEG), Hyaluronic acid(HA), and Poly-Dopamine(PDA). The investigation aimed to examine whether the coated surfaces showed enhanced bioactivity for orthopedic applications compared to the pure PEEK. The microstructure, surface characteristics, and wettability of PEEK coated with PEG, HA, and PDA were analyzed using scanning electron microscopy(SEM), FT-IR spectrophotometer, Roughness Measurement System, Micro-Vickers, and Contact angle measurement. The mechanical properties were analyzed using a tensile testing machine, while the MTT assay for cell activity was analyzed using a microplate reader to measure optical density. According to the SEM and FT-IR results, the composition and crystal structure of PEG, HA and PDA coated surface were verified. Also, roughness, hardness, and contact angle were all improved in the coating group compared to the pure PEEK. We checked the HepG2 cell proliferation by using MTT assay on 7th days. In MTT assay results, HepG2 cell proliferation was increased with time, at 7 days, cell viability on discs coated with PDA was significantly higher than pure PEEK, PEG, HA coated group. PDA coated PEEK exhibited the highest surface roughness, hardness, contact angle, and cell activity. The mechanical properties were not affected by the presence of the coating.

Keywords

References

  1. M. Gerber, N. R. Crawford, R. H. Chamberlain, M. S. Fifield, J. C. LeHuec, C. A. Dickman, Biomechanical assessment of anterior lumbar interbody fusion with an anterior lumbosacral fixation screw-plate: comparison to stand-alone anterior lumbar interbody fusion and anterior lumbar interbody fusion with pedicle screws in an unstable human cadaver model, Spine, 31 (2006) 762-768. https://doi.org/10.1097/01.brs.0000206360.83728.d2
  2. A. Warburton, S. J. Girdler, C. M. Mikhail, A. Ahn, S. K. Cho, Biomaterials in spinal implants: a review, Neurospine, 17 (2020) 101-110. https://doi.org/10.14245/ns.1938296.148
  3. F. M. Phillips, M. N. Tzermiadianos, L.I. Voronov, R.M. Havey, G. Carandang, S. M. Renner, D. M. Rosler, J. A. Ochoa, A. G. Patwardhan, Effect of the total facet arthroplasty system after complete laminectomy-facetectomy on the biomechanics of implanted and adjacent segments, The Spine Journal, 9 (2009) 96-102. https://doi.org/10.1016/j.spinee.2008.01.010
  4. M. E. Majd, M. Vadhva, R. T. Holt, Anterior cervical reconstruction using titanium cages with anterior plating, Spine, 24 (1999) 1604-1610. https://doi.org/10.1097/00007632-199908010-00016
  5. M. Niinomi, T. Hattori, S. Niwa, Material characteristics and biocompatibility of low rigidity titanium alloys for biomedical applications, Biomaterials in Orthopedics, 22 (2004) 41-62.
  6. D. R. Sumner, T. M. Turner, R. Igloria, R. M. Urban, J. O. Galante, Functional adaptation and ingrowth of bone vary as a function of hip implant, Journal of Biomechanics, 31 (1998) 909-917. https://doi.org/10.1016/S0021-9290(98)00096-7
  7. Y. T. Zhao, Z. Zhang, Q. X. Dai, D. Y. Lin, S. M. Li, Microstructure and bond strength of HA(+ZrO2+Y2O3)/Ti6Al4V composite coatings fabricated by RF magnetron sputtering, Surface and Coatings Technology, 200 (2006) 5354-5363. https://doi.org/10.1016/j.surfcoat.2005.06.010
  8. K. M. Lee, S. W. Park, H. P. Lim, J. T. Koh, S. S. Kang, H. S. Kim, K. B. Park, G. H. Ryoo, K. K. Lee, D. J. Lee, A recent research and development tendency of dental titanium implant, Jaeryo Madang, 22 (2009) 33-40.
  9. Y. Zheng, C. Xiong, S. Zhang, X. Li, L. Zhang, Bone-like apatite coating on functionalized poly(etheretherketone) surface via tailored silanization layers technique, Science and Engineering: C, 55 (2015) 512-523. https://doi.org/10.1016/j.msec.2015.05.070
  10. S. M. Kurtz, J. N. Devine, PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials, 28 (2007) 4845-4869. https://doi.org/10.1016/j.biomaterials.2007.07.013
  11. P. R. Monich, B. Henriques, A. P. N. Oliveira, J. C. Souza, M. C. Fredel, Mechanical and biological behavior of biomedical PEEK matrix composites: a focused review, Materials Letters, 185 (2016) 593-597. https://doi.org/10.1016/j.matlet.2016.09.005
  12. X. Wu, X. Liu, J. Wei, J. Ma, F. Deng, S. Wei, Nano-TiO2/PEEK bioactive composite as a bone substitute material: in vitro and in vivo studies, International Journal of Nanomedicine, 7 (2012) 1215-1225.
  13. F. E. Bastan, M. A. U. Rehman, Y. Y. Avcu, E. Avcu, F. ustel, A. R. Boccaccini, Electrophoretic co-deposition of PEEK-hydroxyapatite composite coatings for biomedical applications, Colloids and Surfaces B: Biointerfaces, 169 (2018) 176-182. https://doi.org/10.1016/j.colsurfb.2018.05.005
  14. L. Wang, L. Weng, S. Song, Z. Zhang, S. Tian, R. Ma, Characterization of polyetheretherketone-hydroxyapatite nanocomposite materials, Materials Science and Engineering: A, 528 (2011) 3689-3696. https://doi.org/10.1016/j.msea.2011.01.064
  15. L. Wang, L. Weng, S. Song, Q. Sun, Mechanical properties and microstructure of polyetheretherketone-hydroxyapatite nanocomposite materials, Materials Letters, 64 (2010) 2201-2204. https://doi.org/10.1016/j.matlet.2010.06.067
  16. J. H. Lee, J. Kopecek, J. D. Andrade, Protein-resistant surfaces prepared by PEO-containing block copolymer surfactants, Journal of Biomedical Materials Research, 23 (1989) 351-368. https://doi.org/10.1002/jbm.820230306
  17. Y Mori, S Nagaoka, H Takiuchi, T Kikuchi, N Noguchi, H Tanzawa, Y Noishiki, A new antithrombogenic material with long polyethyleneoxide chains, Transactions of the American Society for Artificial Internal Organs, 28 (1982) 459-463.
  18. N. P. Desai, A. Hubbell, Biological responses to polyethylene oxide modified polyethylene terephthalate surfaces, Journal of Biomedical Materials Research, 25 (1991) 829-843. https://doi.org/10.1002/jbm.820250704
  19. J. Necas, L. Bartosikova, P. Brauner, J. Kolar, Hyaluronic acid (hyaluronan): a review,Veterinarni Medicina, 53 (2008) 397-411. https://doi.org/10.17221/1930-VETMED
  20. K. Meyer, The biological significance of hyaluronic acid and hyaluronidase, Physiological Reviews, 27 (1947) 335-359. https://doi.org/10.1152/physrev.1947.27.3.335
  21. B. Sadowitz, K. Seymour, V. Gahtan, K. G. Maier, The role of hyaluronic acid in atherosclerosis and intimal hyperplasia, Journal of Surgical Research, 173 (2012) 63-72. https://doi.org/10.1016/j.jss.2011.09.025
  22. T. Sasaki, C. Watanabe, Stimulation of osteoinduction in bone wound healing by high-molecular hyaluronic acid, Bone, 16 (1995) 9-15. https://doi.org/10.1016/8756-3282(95)80005-B
  23. E. Sato, T. Ando, J. Ichikawa, G. Okita, N. Sato, M. Wako, T. Ohba, S. Ochiai, T. Hagino, R. Jacobson, H. Haro, High molecular weight hyaluronic acid increases the differentiation potential of the murine chondrocytic ATDC5 cell line, Journal of Orthopaedic Research, 32 (2014) 1619-1627. https://doi.org/10.1002/jor.22691
  24. M. E. Wigg, D. Amiel, J. Vandeberg, L. Kitabayashi, F. L. Harwood, K. E. Arfors, The early effect of high molecular weight hyaluronan (hyaluronic acid) on anterior cruciate ligament healing: an experimental study in rabbits, Journal of Orthopaedic Research, 8 (1990) 425-434. https://doi.org/10.1002/jor.1100080314
  25. D. J. Crisp, G. Walker, G. A. Young, A. B. Yule, Adhesion and substrate choice in mussels and barnacles, Journal of Colloid and Interface Science, 104 (1985) 40-50. https://doi.org/10.1016/0021-9797(85)90007-4
  26. I. You, T. G. Lee, Y. S. Nam, H. Lee, Fabrication of a micro-omnifluidic device by omniphilic/omniphobic patterning on nanostructured surfaces, ACS Nano, 8 (2014) 9016-9024. https://doi.org/10.1021/nn502226v
  27. S. M. Kang, I. You, W. K. Cho, H. K. Shon, T. G. Lee, I. S. Choi, J. M. Karp, H. Lee, Onestep modification of superhydrophobic surfaces by a mussel-inspired polymer coating, Angewandte Chemie International Edition, 49 (2010) 9401-9404. https://doi.org/10.1002/anie.201004693
  28. M. E. Lynge, R. Ogaki, A. O. Laursen, J. Lovmand, D. S. Sutherland, B. Stadler, PolyPDAmine/liposome coatings and their interaction with myoblast cells, ACS Applied Materials & Interfaces, 3 (2011) 2142-2147. https://doi.org/10.1021/am200358p
  29. S. H. Ku, J. Ryu, S. K. Hong, H. Lee, C. B. Park, General functionalization route for cell adhesion on non-wetting surfaces, Biomaterials, 31 (2010) 2535-2541. https://doi.org/10.1016/j.biomaterials.2009.12.020
  30. R. Luo, L. Tang, S. Zhong, Z. Yang, J. Wang, In vitro investigation of enhanced hemocompatibility and endothelial cell proliferation associated with quinonerich polyPDAmine coating, ACS Applied Materials & Interfaces, 5 (2013) 1704-1714. https://doi.org/10.1021/am3027635
  31. K. Yang, J. S. Lee, J. Kim, Y. B. Lee, H. Shin, S. H. Um, J. B. Kim, K. I. Park, H. Lee, S. W. Cho, PolyPDAmine-mediated surface modification of scaffold materials for human neural stem cell engineering, Biomaterials, 33 (2012) 6952-6964. https://doi.org/10.1016/j.biomaterials.2012.06.067
  32. K. Kandasamy, K. Narayanan, M. Ni, C. Du, A. C. A. Wan, D. Zink, Polysulfone membranes coated with polymerized 3, 4-dihydroxyl-phenylalanine are a versatile and cost-effective synthetic substrate for defined long-term cultures of human pluripotent stem cells, Biomacromolecules, 15 (2014) 2067-2078. https://doi.org/10.1021/bm5001907
  33. J. Ryu, S. H. Ku, H. Lee, C. B. Park, Musselinspired polyPDAmine coating as a universal route to hydroxyapatite crystallization, Advanced Functional Materials, 20 (2010) 2132-2139.
  34. T. An, N. Lee, H. Cho, S. Kim, D. S. Shin, S. M. Lee, Ultra-selective detection of Fe2+ ion by redox mechanism based on fluorescent polymerized PDAmine derivatives, RSC Advances, 7 (2017) 30582-30587. https://doi.org/10.1039/C7RA04107A
  35. J. Carneiro, P. M. Doll-Boscardin, B. C. Fiorin, J. M. Nadal, P. V. Farago, J. P. Paula, Development and characterization of hyaluronic acid-lysine nanoparticles with potential as innovative dermal filling, Brazilian Journal of Pharmaceutical Sciences, 52 (2016) 645-651. https://doi.org/10.1590/s1984-82502016000400008
  36. G. Kwon, H. Kim, K. C. Gupta, I. K. Kang, Enhanced tissue compatibility of polyetheretherketone disks by PDAmine-mediated protein immobilization, Macromolecular Research, 26 (2018) 128-138.
  37. M. Sahu, V. R. M. Reddy, B. Kim, B. Patro, C. Park, W. K. Kim, P. Sharma, Fabrication of Cu2ZnSnS4 light absorber using a cost-effective mechanochemical method for photovoltaic applications, Materials, 15 (2022) 1708.
  38. L. Sennerby, L. E. Ericson, P. Thomsen, U. Lekholm, P. Astrand, Structure of the bone/ titanium interface in retrieved clinical oral implants, Clinical Oral Implants Research, 2 (1992) 103-111. https://doi.org/10.1034/j.1600-0501.1991.020302.x
  39. A. Wennerberg, A. Ektessabi, T. Albrektsson, C. Johansson, B. Andersson, A 1 year follow-up of implants of different surface roughness placed inrabit bone, International Journal of Oral & Maxillofacial Implants, 12 (1997) 1-21.
  40. G. Y. Kim, Y. H. Kwak, H. J. Kim, Evaluation of physical properties of polycarbonate temporary restoration materials, Journal of Dental Rehabilitation and Applied Science, 36 (2020) 168-175. https://doi.org/10.14368/jdras.2020.36.3.168
  41. S. J. Lee, D. H. Lee, T. R. Yoon, H. K. Kim, H. H. Jo, J. S. Park, J. H. Lee, W. D. Kim, I. K. Kwon, S. A. Park, Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering, Acta Biomaterialia, 40 (2016) 182-191. https://doi.org/10.1016/j.actbio.2016.02.006
  42. J. S. Park, S. J. Lee, T. G. Jung, J. H. Lee, W. D. Kim, J. Y. Lee, S. A. Park, Surface modification of a three-dimensional polycaprolactone scaffold by polydopamine, biomineralization, and BMP-2 immobilization for potential bone tissue applications, Colloids and Surfaces B: Biointerfaces, 199 (2021) 111528.