DOI QR코드

DOI QR Code

SOFR 기간 데이터에 대한 동적 넬슨-시겔 이자율 곡선의 베이지안 접근법

A Bayesian approach for dynamic Nelson-Siegel yield curve modeling on SOFR term rate data

  • 임성호 (중앙대학교 응용통계학과) ;
  • 황범석 (중앙대학교 응용통계학과)
  • Seong Ho Im (Department of Applied Statistics, Chung-Ang University) ;
  • Beom Seuk Hwang (Department of Applied Statistics, Chung-Ang University)
  • 투고 : 2023.01.26
  • 심사 : 2023.03.03
  • 발행 : 2023.08.31

초록

동적 넬슨-시겔 모형은 채권과 같은 기간 구조를 갖고 있는 금융상품의 이자율 곡선모형에서 널리 사용되고 있다. 본 연구에서는 동적 넬슨-시겔 모형을 상태 공간 모형의 관점에서 설명하고 해당 모형에 적용할 수 있는 베이지안 접근법에 대해 알아보고자 한다. 그리고 SOFR 기간 데이터를 베이지안 동적 넬슨-시겔 모형에 적용하여 그 성능을 확인하고 바시첵 모형, 빈도주의 접근법을 활용한 동적 넬슨-시겔 모형, 2요인 베이지안 동적 넬슨-시겔 모형과 같은 다른 경쟁 모형들과 성능을 비교해보고자 한다. 우리는 베이지안 동적 넬슨-시겔 모형이 SOFR 기간 데이터에 대해서 다른 모형들보다 우수한 성능을 보여준다는 것을 확인할 수 있었다.

Dynamic Nelson-Siegel model is widely used in modeling term structure of interest rates for financial products. In this study, we explain dynamic Nelson-Siegel model from the perspective of the state space model and explore Bayesian approaches that can be applied to that model. By applying SOFR term rate data to the Bayesian dynamic Nelson-Siegel model, we confirm the performance and compare it with other competing models such as Vasicek model, dynamic Nelson-Siegel model based on the frequentist approach, and the two-factor Bayesian dynamic Nelson-Siegel model. We also confirm that the Bayesian dynamic Nelson-Siegel model outperformed its competitors on SOFR term rate data based on RMSE.

키워드

참고문헌

  1. Andersen LBG and Bang DRA (2020). Spike modeling for interest rate derivatives with an application to SOFR caplets, SSRN Electronic Journal, 1-59, Available from SSRN: https://ssrn.com/abstract=3700446
  2. Carter CK and Kohn R (1994). A multifactor spot rate model for the pricing of interest rate derivatives, Biometrika, 81, 541-543. https://doi.org/10.1093/biomet/81.3.541
  3. CME Group Inc. (2022). SOFR term rate data, Available from: https://www.cmegroup.com/
  4. Christensen JHE, Diebold FX, and Rudebusch GD (2007). The affine arbitrage-free class of Nelson-Siegel term structure models, PIER Working Paper 07-029, Penn Institute for Economic Research.
  5. Christensen JHE, Diebold FX, and Rudebusch GD (2008). An arbitrage-free generalized Nelson-Siegel term structure model, PIER Working Paper 08-030, Penn Institute for Economic Research.
  6. Diebold FX and Li C (2006). Forecasting the term structure of government bond yields, Journal of Econometrics, 130, 337-364. https://doi.org/10.1016/j.jeconom.2005.03.005
  7. Gellert K and Schlogl E (2021). Short rate dynamics: A fed funds and SOFR perspective, SSRN Electronic Journal, 8, 1790-1817. https://doi.org/10.2139/ssrn.3763589
  8. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, and Rubin DB (2014). Bayesian Data Analysis, CRC Press, New York.
  9. Kang KH (2021). Bayesian Econometrics, ParkYoungsa, Seoul.
  10. Kim C and Nelson CR (1999). State-Space Models with Regime-Switching: Classical and Gibbs-sampling Approaches with Applications, MIT Press, Cambridge, Mass.
  11. Kim TH and Song DS (2009). The term structure and predicting the domestic recessions, The Korean Journal of Applied Statistics, 22, 249-260. https://doi.org/10.5351/KJAS.2009.22.2.249
  12. Lou W (2022). SOFR term rates from treasury repo pricing, The Journal of Derivatives Summer 1, 153.
  13. Lowrey A (2012). The Libor scandal's consumer upside, The New York Times, Available from: https://archive.nytimes.com/economix.blogs.nytimes.com/2012/07/09/the-libor-scandals-consumer-upside/?searchResultPosition=4
  14. Lyashenko A and Mercurio F (2019). Looking forward to backward-looking rates: A modeling framework for term rates replacing LIBOR, SSRN Electronic Journal, 1-22, Available from SSRN: https://ssrn.com/abstract=3482132
  15. Macrina A and Skovmand D (2020). Rational savings account models for backward-looking interest rate benchmarks, Risks, 8, 23.
  16. MATLAB and Statistics Toolbox Release 2022b, The MathWorks, Inc., Natick, Massachusetts, United States.
  17. Nelson CR and Siegel AF (1987). Parsimonious modeling of yield curves, Journal of Business, 60, 473-489. https://doi.org/10.1086/296409
  18. Peterson S, Stapleton RC, and Subrahmanyam MG (2003). On Gibbs sampling for state space models, Journal of Financial and Quantitative Analysis, 38, 847-880. https://doi.org/10.2307/4126746
  19. Python Software Foundation. Python Language Reference, version 3.7.6, Available from: http://www.python.org
  20. R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  21. Skov JB and Skovmand D (2021). Dynamic term structure models for sofr futures, Journal of Futures Markets, 41, 1520-1544. https://doi.org/10.1002/fut.22246
  22. Vasicek O (1977). An equilibrium characterization of the term structure, Journal of Financial Economics, 5, 177-188. https://doi.org/10.1016/0304-405X(77)90016-2