과제정보
이 논문은 연구재단 연구 과제 NRF-2020R1F1A1A01074157에 의하여 수행되었음.
참고문헌
- Abadie A and Imbens GW (2006). Large sample properties of matching estimators for average treatment effects, Econometrica, 74, 235-267. https://doi.org/10.1111/j.1468-0262.2006.00655.x
- Aronszajn N (1950). Theory of reproducing kernels, Transactions of the American Mathematical Society, 68, 337-404. https://doi.org/10.1090/S0002-9947-1950-0051437-7
- Carpenter JR, Kenward MG, and Vansteelandt S (2006). A comparison of multiple imputation and doubly robust estimation for analyses with missing data, Journal of the Royal Statistical Society: Series A (Statistics in Society), 169, 571-584. https://doi.org/10.1111/j.1467-985X.2006.00407.x
- Cheng D, Li J, Liu L, Le TD, Liu J, and Yu K (2022). Sufficient dimension reduction for average causal effect estimation, Data Mining and Knowledge Discovery, 36, 1174-1196. https://doi.org/10.1007/s10618-022-00832-5
- Cook RD (1996). Graphics for regressions with a binary response, Journal of the American Statistical Association, 91, 983-992. https://doi.org/10.1080/01621459.1996.10476968
- Cook RD (2009). Regression Graphics: Ideas for Studying Regressions through Graphics, John Wiley & Sons, New York.
- Cook RD and Weisberg S (1991). Sliced inverse regression for dimension reduction: Comment, Journal of the American Statistical Association, 86, 328-332. https://doi.org/10.1080/01621459.1991.10475036
- De Luna X, Waernbaum I, and Richardson TS (2011). Covariate selection for the nonparametric estimation of an average treatment effect, Biometrika, 98, 861-875. https://doi.org/10.1093/biomet/asr041
- Dong Y and Li B (2010). Dimension reduction for non-elliptically distributed predictors: Second-order methods, Biometrika, 97, 279-294. https://doi.org/10.1093/biomet/asq016
- Fukumizu K, Bach FR, and Jordan MI (2004). Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces, Journal of Machine Learning Research, 5, 73-99. https://doi.org/10.21236/ADA446572
- Ghasempour M and de Luna X (2021). SDRcausal: An R package for causal inference based on sufficient dimension reduction, Available from: arXiv preprint arXiv:2105.02499
- Ghosh T, Ma Y, and De Luna X (2021). Sufficient dimension reduction for feasible and robust estimation of average causal effect, Statistica Sinica, 31, 821-842. https://doi.org/10.5705/ss.202018.0416
- Glymour M, Pearl J, and Jewell NP (2016). Causal Inference in Statistics: A Primer, John Wiley & Sons, United Kingdom.
- Glynn AN and Quinn KM (2010). An introduction to the augmented inverse propensity weighted estimator, Political Analysis, 18, 36-56. https://doi.org/10.1093/pan/mpp036
- Hahn J (1998). On the role of the propensity score in efficient semiparametric estimation of average treatment effects, Econometrica, 66, 315-331. https://doi.org/10.2307/2998560
- Kang JD and Schafer JL (2007). Demystifying double robust-ness: A comparison of alternative strategies for estimating a population mean from incomplete data, Statistical Science, 22, 523-539. https://doi.org/10.1214/07-STS227
- Li B and Dong Y (2009). Dimension reduction for nonelliptically distributed predictors, The Annals of Statistics, 37, 1272-1298. https://doi.org/10.1214/08-AOS598
- Li B and Wang S (2007). On directional regression for dimension reduction, Journal of the American Statistical Association, 102, 997-1008. https://doi.org/10.1198/016214507000000536
- Li KC (1991). Sliced inverse regression for dimension reduction, Journal of the American Statistical Association, 86, 316-327. https://doi.org/10.1080/01621459.1991.10475035
- Liu J, Ma Y, and Wang L (2018). An alternative robust estimator of average treatment effect in causal inference, Biometrics, 74, 910-923. https://doi.org/10.1111/biom.12859
- Ma Y and Zhu L (2012). A semiparametric approach to dimension reduction, Journal of the American Statistical Association, 107, 168-179. https://doi.org/10.1080/01621459.2011.646925
- Ma Y and Zhu L (2014). On estimation efficiency of the central mean subspace, Journal of the Royal Statistical Society: Series B: Statistical Methodology, 76, 885-901. https://doi.org/10.1111/rssb.12044
- Ma S, Zhu L, Zhang Z, Tsai CL, and Carroll RJ (2019). A robust and efficient approach to causal inference based on sparse sufficient dimension reduction, Annals of Statistics, 47, 1505-1535. https://doi.org/10.1214/18-AOS1722
- Mukherjee B and Chatterjee N (2008). Exploiting gene-environment independence for analysis of case-control studies: An empirical Bayes-type shrinkage estimator to trade-off between bias and efficiency, Biometrics, 64, 685-694. https://doi.org/10.1111/j.1541-0420.2007.00953.x
- Robins JM, Rotnitzky A, and Zhao LP (1994). Estimation of regression coefficients when some regressors are not always observed, Journal of the American Statistical Association, 89, 846-866. https://doi.org/10.1080/01621459.1994.10476818
- Robins JM, Rotnitzky A, and Zhao LP (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data, Journal of the American Statistical Association, 90, 106-121. https://doi.org/10.1080/01621459.1995.10476493
- Rubin DB (1973). Matching to remove bias in observational studies, Biometrics, 29, 159-183. https://doi.org/10.2307/2529684
- Vansteelandt S, Bekaert M, and Claeskens G (2012). On model selection and model misspecification in causal inference, Statistical Methods in Medical Research, 21, 7-30. https://doi.org/10.1177/0962280210387717
- Wager S and Athey S (2018). Estimation and inference of heterogeneous treatment effects using random forests, Journal of the American Statistical Association, 113, 1228-1242. https://doi.org/10.1080/01621459.2017.1319839
- Ye Z and Weiss RE (2003). Using the bootstrap to select one of a new class of dimension reduction methods, Journal of the American Statistical Association, 98, 968-979. https://doi.org/10.1198/016214503000000927
- Yuan M and Lin Y (2006). Model selection and estimation in regression with grouped variables, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68, 49-67. https://doi.org/10.1111/j.1467-9868.2005.00532.x