DOI QR코드

DOI QR Code

Activated Carbon-Embedded Reduced Graphene Oxide Electrodes for Capacitive Desalination

  • Tarif Ahmed (School of Energy Engineering, Kyungpook National University) ;
  • Jin Sun Cha (Material Technology Center, Korea Testing Laboratory) ;
  • Chan-gyu Park (Environmental Technology Division, Korea Testing Laboratory) ;
  • Ho Kyong Shon (Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney) ;
  • Dong Suk Han (Center for Advanced Materials, Qatar University) ;
  • Hyunwoong Park (School of Energy Engineering, Kyungpook National University)
  • 투고 : 2023.01.30
  • 심사 : 2023.02.26
  • 발행 : 2023.08.31

초록

Capacitive deionization of saline water is one of the most promising water purification technologies due to its high energy efficiency and cost-effectiveness. This study synthesizes porous carbon composites composed of reduced graphene oxide (rGO) and activated carbon (AC) with various rGO/AC ratios using a facile chemical method. Surface characterization of the rGO/AC composites shows a successful chemical reduction of GO to rGO and incorporation of AC into rGO. The optimized rGO/AC composite electrode exhibits a specific capacitance of ~243 F g-1 in a 1 M NaCl solution. The galvanostatic charging-discharging test shows excellent reversible cycles, with a slight shortening in the cycle time from the ~260th to the 530th cycle. Various monovalent sodium salts (NaF, NaCl, NaBr, and NaI) and chloride salts (LiCl, NaCl, KCl, and CsCl) are deionized with the rGO/AC electrode pairs at a cell voltage of 1.3 V. Among them, NaI shows the highest specific adsorption capacity of ~22.2 mg g-1. Detailed surface characterization and electrochemical analyses are conducted.

키워드

과제정보

This research was supported by the National Research Foundation of Korea (2018R1A6A1A03024962 and 2019R1A2C2002602) and the Ministry of Trade, Industry, and Energy (MOTIE), Korea (2021-20015633). In addition, this publication was made possible by a grant from the Qatar National Research Fund under its National Priorities Research Program (NPRP 13S-0202-200228).

참고문헌

  1. P. H. Gleick, Water in Crisis: A Guide to the World's Fresh Water Resources, Oxford University Press, New York, 1993.
  2. H. Park, J. Environ. Chem. Eng., 2022, 10(1), 106919.
  3. M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas, and A. M. Mayes, Nautre, 2008, 452, 301-310. https://doi.org/10.1038/nature06599
  4. M. B. S. Ali, D. J. Ennigrou, and B. Hamrouni, Environ. Technol., 2013, 34(17), 2521-2529. https://doi.org/10.1080/09593330.2013.777081
  5. A. J. Toth, Membranes, 2020, 10(10), 265. https://doi.org/10.3390/membranes10100265
  6. H. Sayyaadi and A. Saffari, Appl. Energy, 2010, 87(4), 1122-1133. https://doi.org/10.1016/j.apenergy.2009.05.023
  7. J. Bohdziewicz, M. Bodzek, and E. Wasik, Desalination, 1999, 121, 139-147. https://doi.org/10.1016/S0011-9164(99)00015-6
  8. S. Kim, D. S. Han, and H. Park, Appl. Catal. B, 2021, 284, 119745.
  9. B. Kim, G. Piao, S. Kim, S. Y. Yang, Y. Park, D. S. Han, H. K. Shon, M. R. Hoffmann, and H. Park, ACS Sustain. Chem. Eng., 2019, 7(18), 15320-15328. https://doi.org/10.1021/acssuschemeng.9b02640
  10. S. Kim, G. Piao, D. S. Han, H. K. Shon, and H. Park, Energy Environ. Sci., 2018, 11, 344-353. https://doi.org/10.1039/C7EE02640D
  11. S. K. Sami, J. Y. Seo, S.-E. Hyeon, M. S. A. Shershah, P.-J. Yoo, and C.-H. Chung, RSC Adv., 2018, 8, 4182-4190. https://doi.org/10.1039/C7RA12764B
  12. S. Porada, R. Zhao, A. Van Der Wal, V. Presser, and P. M. Biesheuvel, Prog. Mater. Sci., 2013, 58(8), 1388-1442. https://doi.org/10.1016/j.pmatsci.2013.03.005
  13. Y. Cheng, Z. Hao, C. Hao, Y. Deng, X. Li, K. Li, and Y. Zhao, RSC Adv., 2019, 9, 24401-24419. https://doi.org/10.1039/C9RA04426D
  14. L. Wang, J. Dykstra, and S. Lin, Environ. Sci. Technol., 2019, 53, 3366-3378. https://doi.org/10.1021/acs.est.8b04858
  15. T. J. Welgemoed and C. F. Schutte, Desalination, 2005, 183(1-3), 327-340. https://doi.org/10.1016/j.desal.2005.02.054
  16. G. Folaranmi, M. Bechelany, P. Sistat, M. Cretin, and F. Zaviska, Nanomaterials, 2021, 11(5), 1090.
  17. G. Wang, B. Qian, Q. Dong, J. Yang, Z. Zhao, and J. Qiu, Sep. Purif. Technol., 2013, 103, 216-221. https://doi.org/10.1016/j.seppur.2012.10.041
  18. H.-H. Jung, S.-W. Hwang, S.-H. Hyun, K.-H. Lee, and G.-T. Kim, Desalination, 2007, 216(1-3), 377-385. https://doi.org/10.1016/j.desal.2006.11.023
  19. C. Tsouris, R. Mayes, J. Kiggans, K. Sharma, S. Yiacoumi, D. DePaoli, and S. Dai, Environ. Sci. Technol., 2011, 45(23), 10243-10249. https://doi.org/10.1021/es201551e
  20. L. Wang, M. Wang, Z.-H. Huang, T. Cui, X. Gui, F. Kang, K. Wang, and D. Wu, J. Mater. Chem., 2011, 21, 18295-18299. https://doi.org/10.1039/c1jm13105b
  21. Y. K. Kim and H. Park, Energy Environ. Sci., 2011, 4, 685-694. https://doi.org/10.1039/C0EE00330A
  22. H. Li, T. Lu, L. Pan, Y. Zhang, and Z. Sun, J. Mater. Chem., 2009, 19, 6773-6779. https://doi.org/10.1039/b907703k
  23. G. Folaranmi, M. Bechelany, P. Sistat, M. Cretin, and F. Zaviska, Membranes, 2020, 10(5), 96.
  24. P. Liu, H. Wang, T. Yan, J. Zhang, L. Shi, and D. Zhang, J. Mater. Chem. A, 2016, 4, 5303-5313. https://doi.org/10.1039/C5TA10680J
  25. J. Zhang, J. Jiang, H. Li, and X. S. Zhao, Energy Environ. Sci., 2011, 4, 4009-4015. https://doi.org/10.1039/c1ee01354h
  26. V. Chabot, D. Higgins, A. Yu, X. Xiao, Z. Chen, and J. Zhang, Energy Environ. Sci., 2014, 7, 1564-1596. https://doi.org/10.1039/c3ee43385d
  27. Y. Wimalasiri and L. Zou, Carbon, 2013, 59, 464-471. https://doi.org/10.1016/j.carbon.2013.03.040
  28. H. Li, L. Zou, L. Pan, and Z. Sun, Environ. Sci. Technol., 2010, 44(22), 8692-8697. https://doi.org/10.1021/es101888j
  29. N. I. Zaaba, K. L. Foo, U. Hashim, S. J. Tan, W.-W. Liu, and C. H. Voon, Procedia Eng., 2017, 184, 469-477. https://doi.org/10.1016/j.proeng.2017.04.118
  30. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. S. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, ACS Nano, 2010, 4(8), 4806-4814. https://doi.org/10.1021/nn1006368
  31. J. Park, H. Liu, G. Piao, U. Kang, H. W. Jeong, C. Janaky, and H. Park, Chem. Eng. J., 2022, 437(2), 135388.
  32. H. Kang, C. Zhang, Y. Xu, W. Zhang, J. Jiao, Z. Li, L. Zhu, and X. Liu, RSC Adv., 2020, 10, 1507-1513. https://doi.org/10.1039/C9RA10429A
  33. V. B. Mohan, K. Jayaraman, and D. Bhattacharyya, Solid State Commun., 2020, 320, 114004. https://doi.org/10.1016/j.ssc.2020.114004
  34. G. Khan, Y. K. Kim, S. K. Choi, D. S. Han, A. Abdel-Wahab, and H. Park, Bull. Korean Chem. Soc., 2013, 34(4), 1137-1144. https://doi.org/10.5012/bkcs.2013.34.4.1137
  35. G. Khan, S. K. Choi, S. Kim, S. K. Lim, J. S. Jang, and H. Park, Appl. Catal. B, 2013, 142-143, 647-653. https://doi.org/10.1016/j.apcatb.2013.05.075
  36. Y. K. Kim, M. Kim, S.-H. Hwang, S. K. Lim, H. Park, and S. Kim, Int. J. Hydrog. Energy, 2015, 40(1), 136-145. https://doi.org/10.1016/j.ijhydene.2014.11.011
  37. N. M. S. Hidayah, W.-W. Liu, C.-W. Lai, N. Z. Noriman, C.-S. Khe, U. Hashim, and H. C. Lee, AIP Conf. Proc., 2017, 1982, 150002.
  38. W. Sun, X. Ou, X. Yue, Y. Yang, Z. Wang, D. Rooney, and K. Sun, Electrochim. Acta 2016, 207, 198-206. https://doi.org/10.1016/j.electacta.2016.04.135
  39. K.-L. Yang, T.-Y. Ying, S. Yiacoumi, C. Tsouris, and E. S. Vittoratos, Langmuir, 2001, 17(6), 1961-1969. https://doi.org/10.1021/la001527s
  40. Z. Chen, H. Zhang, C. Wu, Y. Wang, and W. Li, Desalination, 2015, 369, 46-50. https://doi.org/10.1016/j.desal.2015.04.022
  41. C.-H. Hou and C.-Y. Huang, Desalination, 2013, 314, 124-129. https://doi.org/10.1016/j.desal.2012.12.029
  42. C.-H. Hou, C. Liang, S. Yiacoumi, S. Dai, and C. Tsouris, J. Colloid Interf. Sci., 2006, 302(1), 54-61. https://doi.org/10.1016/j.jcis.2006.06.009
  43. E. R. Nightingale Jr, J. Phys. Chem., 1959, 63(9), 1381-1387. https://doi.org/10.1021/j150579a011
  44. T.-Y. Ying, K.-L. Yang, S. Yiacoumi, and C. Tsouris, J. Colloid Interf. Sci., 2002, 250(1), 18-27. https://doi.org/10.1006/jcis.2002.8314