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VECTORIAL LINEAR CONNECTIONS

Hwajeong Kim

Abstract. In this article, we consider a vectorial linear connection
which is determined by three fixed vector fields. Classifying these
vectorial connections, we obtain a new type of generalized statistical
manifolds which allow non-zero torsion.

1. Introduction

In an Euclidean space Rd, there is a canonical way to identify the
tangent spaces at different points, namely giving a parallel displacement
of a tangent plane. Using this parallel displacement, we can define the
derivative of a vector field in a given direction.

On the other hand, in a Riemannian manifold (M, g), there is no
canonical way of identifying tangent spaces. Thus we need a linear con-
nection ∇, a notion of derivative for vector fields depending on certain
choices.

A linear connection ∇ has its dual connection ∇∗ with respect to the
metric g, satisfying

d(g(X,Y )) = g(∇X,Y ) + g(X,∇∗Y ),

for all vector fieldsX,Y, Z. This notion of dual connections is introduced
by A.P. Norden, Nagaoka and Amari, for details we refer to ([2, 10, 11]).

A metric connection is a linear connection ∇ which satisfies ∇ = ∇∗,
that is ∇g = 0.

A statistical manifold is a manifold (M, g,∇) which satisfies T∇ =
T∇∗

= 0, where T∇ denotes the torsion of the connection ∇. A notion
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for generalized statistical manifolds, which allow a non-zero torsion, is
introduced in [8].

Classifying the metric connections, we can express a vectorial metric
connection as follows ([1, 5]):

(1.1) ∇XY = ∇g
XY + g(X,Y )V − g(V, Y )X

for the Levi-Civita connection ∇g and a fixed vector field V .

Generalizing the above expression by two fixed vector fields, we can
define a vectorial linear connection and obtain examples for generalized
statistical manifolds, for details please refer to [7] and section 2 of this
article.

In this article, we generalize the expression (1.1) by three fixed vector
fields and obtain new examples for generalized statistical manifolds as
defined in [8] (section 3).

2. Preliminaries

Let (M, g) be a Riemannian manifold and Γ(M) denote the set of
sections of the tangent bundle TM .

A metric connection ∇ is a linear connection satisfying

(2.1) V (g(X,Y )) = g(∇V X,Y ) + g(X,∇V Y )

for V,X, Y ∈ Γ(M).

The Levi-Civita connection, denoted by ∇g, is the unique metric
connection with torsion T∇ = 0, where the torsion tensor T∇ of a linear
connection ∇ is defined by

T∇(X,Y ) = ∇XY −∇Y X − [X,Y ],

where [X,Y ] is the Lie-bracket.

The difference between a linear connection ∇ and the Levi-Civita
connection ∇g is a (2, 1)-tensor field A satisfying that

∇XY = ∇g
XY +A(X,Y ).

The same notation will be used for the (3, 0)- tensor field derived
from the (2, 1)-tensor A as follows:

A(X,Y, Z) = ⟨A(X,Y ), Z⟩.
The properties of A, being symmetric or antisymmetric, give geo-

metric interpretations for the connection ∇. We can easily check the
following.
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Remark 2.1. A connection ∇ = ∇g +A is

(i) metric if and only if A(X,Y, Z) +A(X,Z, Y ) = 0,
(ii) torsion-free if and only if A(X,Y, Z)−A(Y,X,Z) = 0.

In particular, if A(X,Y, Z), as a (3, 0)-tensor, is totally symmetric
with respect to X,Y, Z, then (M, g,∇) is a statistical manifold, whose
torsion is necessarily zero, for details we refer to [4].

Using the O(n) action on A, we classify metric connections, actually
the space of tensor fields A’s as follows ([1, 5, 12])

(2.2) A = TM ⊕ Λ3(TM)⊕A′.

The first space of the above decomposition gives the so-called vectorial
metric connections which can be expressed as

A(X,Y ) = g(X,Y )V − g(V, Y )X,

for a fixed vector field V .

In [7], taking two fixed vector fields V1, V2, another type of vectorial
connections is discussed, where the tensor A is defined by

A(X,Y ) = g(X,Y )V1 − g(V2, Y )X.

Given a linear connection ∇, a linear connection ∇∗ can be derived
uniquely such that the metric g is preserved by the connections ∇ and
∇∗ with respect to the metric g, that is

Z(g(X,Y )) = g(∇ZX,Y ) + g(X,∇∗
ZY ).

Here the connection ∇∗ is expressed as

∇∗
ZX = ∇g

ZX +A∗(Z,X)

where

A(Z,X, Y ) +A∗(Z, Y,X) = 0.

3. Vectorial linear connections

Now we consider a (3, 0)- tensor field Ã(X,Y, Z) determined by three
fixed vector fields V1, V2, V3 as follows:

Ã(X,Y, Z) = g(X,V1)g(Y,Z) + g(Y, V2)g(X,Z) + g(Z, V3)g(X,Y ).

Then a vectorial linear connection ∇̃ by three fixed vector fields can be
defined by

(3.1) ∇̃XY = ∇g
XY + Ã(X,Y )
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with
Ã(X,Y ) = g(X,V1)Y + g(Y, V2)X + g(X,Y )V3.

We can derive following geometric properties of ∇̃.

Proposition 3.1. (i) A vectorial connection ∇̃ by three vector
fields V1, V2, V3 is a metric connection if and only if V1 = 0 and
V2 = −V3.

(ii) A vectorial connection ∇̃ by three vector fields V1, V2, V3 is torsion-
free if and only if V1 = V2.

Proof. By Remark 2.1, we compute the following.

(i) For all X,Y, Z ∈ Γ(TM)

Ã(X,Y, Z) + Ã(X,Z, Y ) = g(X,V1)g(Y, Z) + g(Y, V2)g(X,Z) + g(Z, V3)g(X,Y )

+g(X,V1)g(Z, Y ) + g(Z, V2)g(X,Y ) + g(Y, V3)g(X,Z)

= 2g(X,V1)g(Y,Z) + g(Y, V2 + V3)g(X,Z) + g(X,Y )g(Z, V2 + V3) = 0,

if and only if V1 = 0 and V2 + V3 = 0.

(ii) For all X,Y, Z ∈ Γ(TM)

Ã(X,Y, Z)− Ã(Y,X,Z) = g(X,V1)g(Y, Z) + g(Y, V2)g(X,Z) + g(Z, V3)g(X,Y )

−g(Y, V1)g(X,Z)− g(X,V2)g(Y, Z)− g(Z, V3)g(Y,X)

= g(X,V1 − V2)g(Y,Z) + g(Y, V2 − V1)g(X,Z) = 0,

if and only if V1 = V2.

Proposition 3.2. The dual connection of a vectorial connection ∇̃
by three vector fields V1, V2, V3 is

∇̃∗ = ∇g + Ã∗

with

Ã∗(X,Y ) = g(X,−V1)Y + g(Y,−V3)X + g(X,Y )(−V2).

Proof. For a vectorial connection ∇̃ = ∇g + Ã(X,Y ) by three vector
fields V1, V2, V3 we have

Ã(X,Y ) = g(X,V1)Y + g(Y, V2)X + g(X,Y )V3.

For the dual connection ∇̃∗ = ∇g + Ã∗ of ∇̃, we can compute

Ã∗(X,Y, Z) = −Ã(X,Z, Y )

= −g(X,V1)g(Z, Y )− g(Z, V2)g(X,Y )− g(Y, V3)g(X,Z)

= g(g(X,−V1)Y + g(Y,−V3)X + g(X,Y )(−V2), Z)
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so
Ã∗(X,Y ) = g(X,−V1)Y + g(Y,−V3)X + g(X,Y )(−V2).

A statistical manifold is a torsion-free manifold with some property.
In [8], a notion for generalized statistical manifolds is introduced, where
the torsion can be non-zero.

Definition 3.3 ([3, 8, 9]). A Riemannian manifold (M, g,∇) is a
statistical manifold admitting torsion if

(3.2) (∇Xg)(Y,Z)− (∇Y g)(X,Z) = −g(T∇(X,Y ), Z)

for X,Y, Z ∈ Γ(TM), where T∇ is the torsion tensor of ∇.

In [7] an equivalent condition for (3.2) is introduced.

Proposition 3.4 ([7]). A Riemannian manifold (M, g,∇) where∇ =
∇g +A is a statistical manifold admitting torsion if and only if

A(X,Y, Z) = A(Z, Y,X) for X,Y, Z ∈ Γ(TM).

In Weyl geometry we consider a class of conformal metrics and a
torsion-free connection called Weyl connection which preserves the con-
formal structure. In particular, this connection is known to be uniquely
constructed by a fixed vector field V . So, choosing a metric g in the con-
formal class of metrics we can define the Weyl connection as follows([6]).

Definition 3.5 (Weyl connection, [1, 6]). Given a Riemannian man-
ifold (M, g) and a fixed vector field V , a Weyl connection ∇w is then
defined by

∇w = ∇g +Aw

with
Aw(X,Y ) = g(X,V )Y + g(Y, V )X − g(X,Y )V.

Now considering the vectorial connections as defined in (3.1) we will
obtain some types of examples for Statistical manifolds admitting torsion
in the next Theorem 3.6.

Theorem 3.6. (i) Consider a vectorial connection ∇̃ = ∇g + Ã
by fixed vector fields V1, V2, V3. Then a Riemannian manifold
(M, g, ∇̃) is a statistical manifold admitting torsion if and only
if

V1 = V3.

(ii) The dual connection (∇w)∗ of a Weyl connection ∇w is a statistical
manifold admitting torsion.
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Proof. (i) From Proposition 3.4 we obtain

A(X,Y, Z)−A(Z, Y,X) = g(X,V1)g(Y,Z) + g(Y, V2)g(X,Z) + g(Z, V3)g(X,Y )

−g(Z, V1)g(Y,X)− g(Y, V2)g(Z,X)− g(X,V3)g(Z, Y )

= g(X,V1 − V3)g(Y, Z) + g(Z, V3 − V1)g(X,Y )

= 0.

So, this is zero for all X,Y, Z if and only if V1 = V3.

(ii) Consider a Weyl connection ∇w = ∇g+Aw where for a fixed vector
field V

Aw(X,Y ) = g(X,V )Y + g(Y, V )X − g(X,Y )V.

By Proposition 3.2, it holds (∇w)∗ = ∇g + (Aw)∗ with

(Aw)∗(X,Y ) = g(X,−V )Y + g(Y, V )X + g(X,Y )(−V ).

From the above assertion (i), the manifold (M, g, (∇w)∗) is a sta-
tistical manifold admitting torsion.
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