VECTORIAL LINEAR CONNECTIONS

Hwajeong Kim

Abstract

In this article, we consider a vectorial linear connection which is determined by three fixed vector fields. Classifying these vectorial connections, we obtain a new type of generalized statistical manifolds which allow non-zero torsion.

1. Introduction

In an Euclidean space R^{d}, there is a canonical way to identify the tangent spaces at different points, namely giving a parallel displacement of a tangent plane. Using this parallel displacement, we can define the derivative of a vector field in a given direction.

On the other hand, in a Riemannian manifold (M, g), there is no canonical way of identifying tangent spaces. Thus we need a linear connection ∇, a notion of derivative for vector fields depending on certain choices.

A linear connection ∇ has its dual connection ∇^{*} with respect to the metric g, satisfying

$$
d(g(X, Y))=g(\nabla X, Y)+g\left(X, \nabla^{*} Y\right)
$$

for all vector fields X, Y, Z. This notion of dual connections is introduced by A.P. Norden, Nagaoka and Amari, for details we refer to $([2,10,11])$.

A metric connection is a linear connection ∇ which satisfies $\nabla=\nabla^{*}$, that is $\nabla g=0$.

A statistical manifold is a manifold (M, g, ∇) which satisfies $T^{\nabla}=$ $T^{\nabla^{*}}=0$, where T^{∇} denotes the torsion of the connection ∇. A notion

[^0]for generalized statistical manifolds, which allow a non-zero torsion, is introduced in [8].

Classifying the metric connections, we can express a vectorial metric connection as follows ($[1,5]$):

$$
\begin{equation*}
\nabla_{X} Y=\nabla_{X}^{g} Y+g(X, Y) V-g(V, Y) X \tag{1.1}
\end{equation*}
$$

for the Levi-Civita connection ∇^{g} and a fixed vector field V.
Generalizing the above expression by two fixed vector fields, we can define a vectorial linear connection and obtain examples for generalized statistical manifolds, for details please refer to [7] and section 2 of this article.

In this article, we generalize the expression (1.1) by three fixed vector fields and obtain new examples for generalized statistical manifolds as defined in [8] (section 3).

2. Preliminaries

Let (M, g) be a Riemannian manifold and $\Gamma(M)$ denote the set of sections of the tangent bundle $T M$.

A metric connection ∇ is a linear connection satisfying

$$
\begin{equation*}
V(g(X, Y))=g\left(\nabla_{V} X, Y\right)+g\left(X, \nabla_{V} Y\right) \tag{2.1}
\end{equation*}
$$

for $V, X, Y \in \Gamma(M)$.
The Levi-Civita connection, denoted by ∇^{g}, is the unique metric connection with torsion $T^{\nabla}=0$, where the torsion tensor T^{∇} of a linear connection ∇ is defined by

$$
T^{\nabla}(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y],
$$

where $[X, Y]$ is the Lie-bracket.
The difference between a linear connection ∇ and the Levi-Civita connection ∇^{g} is a $(2,1)$-tensor field A satisfying that

$$
\nabla_{X} Y=\nabla_{X}^{g} Y+A(X, Y) .
$$

The same notation will be used for the (3,0)- tensor field derived from the (2,1)-tensor A as follows:

$$
A(X, Y, Z)=\langle A(X, Y), Z\rangle
$$

The properties of A, being symmetric or antisymmetric, give geometric interpretations for the connection ∇. We can easily check the following.

REmark 2.1. A connection $\nabla=\nabla^{g}+A$ is
(i) metric if and only if $A(X, Y, Z)+A(X, Z, Y)=0$,
(ii) torsion-free if and only if $A(X, Y, Z)-A(Y, X, Z)=0$.

In particular, if $A(X, Y, Z)$, as a $(3,0)$-tensor, is totally symmetric with respect to X, Y, Z, then (M, g, ∇) is a statistical manifold, whose torsion is necessarily zero, for details we refer to [4].

Using the $O(n)$ action on A, we classify metric connections, actually the space of tensor fields A 's as follows ($[1,5,12]$)

$$
\begin{equation*}
\mathcal{A}=T M \oplus \Lambda^{3}(T M) \oplus \mathcal{A}^{\prime} \tag{2.2}
\end{equation*}
$$

The first space of the above decomposition gives the so-called vectorial metric connections which can be expressed as

$$
A(X, Y)=g(X, Y) V-g(V, Y) X
$$

for a fixed vector field V.
In [7], taking two fixed vector fields V_{1}, V_{2}, another type of vectorial connections is discussed, where the tensor A is defined by

$$
A(X, Y)=g(X, Y) V_{1}-g\left(V_{2}, Y\right) X
$$

Given a linear connection ∇, a linear connection ∇^{*} can be derived uniquely such that the metric g is preserved by the connections ∇ and ∇^{*} with respect to the metric g, that is

$$
Z(g(X, Y))=g\left(\nabla_{Z} X, Y\right)+g\left(X, \nabla_{Z}^{*} Y\right)
$$

Here the connection ∇^{*} is expressed as

$$
\nabla_{Z}^{*} X=\nabla_{Z}^{g} X+A^{*}(Z, X)
$$

where

$$
A(Z, X, Y)+A^{*}(Z, Y, X)=0
$$

3. Vectorial linear connections

Now we consider a $(3,0)$ - tensor field $\tilde{A}(X, Y, Z)$ determined by three fixed vector fields V_{1}, V_{2}, V_{3} as follows:

$$
\tilde{A}(X, Y, Z)=g\left(X, V_{1}\right) g(Y, Z)+g\left(Y, V_{2}\right) g(X, Z)+g\left(Z, V_{3}\right) g(X, Y)
$$

Then a vectorial linear connection $\tilde{\nabla}$ by three fixed vector fields can be defined by

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X}^{g} Y+\tilde{A}(X, Y) \tag{3.1}
\end{equation*}
$$

with

$$
\tilde{A}(X, Y)=g\left(X, V_{1}\right) Y+g\left(Y, V_{2}\right) X+g(X, Y) V_{3} .
$$

We can derive following geometric properties of $\tilde{\nabla}$.
Proposition 3.1. (i) A vectorial connection $\tilde{\nabla}$ by three vector fields V_{1}, V_{2}, V_{3} is a metric connection if and only if $V_{1}=0$ and $V_{2}=-V_{3}$.
(ii) A vectorial connection $\tilde{\nabla}$ by three vector fields V_{1}, V_{2}, V_{3} is torsionfree if and only if $V_{1}=V_{2}$.

Proof. By Remark 2.1, we compute the following.
(i) For all $X, Y, Z \in \Gamma(T M)$

$$
\begin{gathered}
\tilde{A}(X, Y, Z)+\tilde{A}(X, Z, Y)=g\left(X, V_{1}\right) g(Y, Z)+g\left(Y, V_{2}\right) g(X, Z)+g\left(Z, V_{3}\right) g(X, Y) \\
\quad+g\left(X, V_{1}\right) g(Z, Y)+g\left(Z, V_{2}\right) g(X, Y)+g\left(Y, V_{3}\right) g(X, Z) \\
=\quad 2 g\left(X, V_{1}\right) g(Y, Z)+g\left(Y, V_{2}+V_{3}\right) g(X, Z)+g(X, Y) g\left(Z, V_{2}+V_{3}\right)=0, \\
\quad \text { if and only if } V_{1}=0 \text { and } V_{2}+V_{3}=0 .
\end{gathered}
$$

(ii) For all $X, Y, Z \in \Gamma(T M)$

$$
\begin{aligned}
& \tilde{A}(X, Y, Z)- \tilde{A}(Y, X, Z)=g\left(X, V_{1}\right) g(Y, Z)+g\left(Y, V_{2}\right) g(X, Z)+g\left(Z, V_{3}\right) g(X, Y) \\
& \quad-g\left(Y, V_{1}\right) g(X, Z)-g\left(X, V_{2}\right) g(Y, Z)-g\left(Z, V_{3}\right) g(Y, X) \\
&= g\left(X, V_{1}-V_{2}\right) g(Y, Z)+g\left(Y, V_{2}-V_{1}\right) g(X, Z)=0, \\
& \text { if and only if } V_{1}=V_{2} .
\end{aligned}
$$

Proposition 3.2. The dual connection of a vectorial connection $\tilde{\nabla}$ by three vector fields V_{1}, V_{2}, V_{3} is

$$
\tilde{\nabla}^{*}=\nabla^{g}+\tilde{A}^{*}
$$

with

$$
\tilde{A}^{*}(X, Y)=g\left(X,-V_{1}\right) Y+g\left(Y,-V_{3}\right) X+g(X, Y)\left(-V_{2}\right) .
$$

Proof. For a vectorial connection $\tilde{\nabla}=\nabla^{g}+\tilde{A}(X, Y)$ by three vector fields V_{1}, V_{2}, V_{3} we have

$$
\tilde{A}(X, Y)=g\left(X, V_{1}\right) Y+g\left(Y, V_{2}\right) X+g(X, Y) V_{3} .
$$

For the dual connection $\tilde{\nabla}^{*}=\nabla^{g}+\tilde{A}^{*}$ of $\tilde{\nabla}$, we can compute

$$
\begin{aligned}
& \tilde{A}^{*}(X, Y, Z)=-\tilde{A}(X, Z, Y) \\
& \quad=-g\left(X, V_{1}\right) g(Z, Y)-g\left(Z, V_{2}\right) g(X, Y)-g\left(Y, V_{3}\right) g(X, Z) \\
& \quad=g\left(g\left(X,-V_{1}\right) Y+g\left(Y,-V_{3}\right) X+g(X, Y)\left(-V_{2}\right), Z\right)
\end{aligned}
$$

so

$$
\tilde{A}^{*}(X, Y)=g\left(X,-V_{1}\right) Y+g\left(Y,-V_{3}\right) X+g(X, Y)\left(-V_{2}\right) .
$$

A statistical manifold is a torsion-free manifold with some property. In [8], a notion for generalized statistical manifolds is introduced, where the torsion can be non-zero.

Definition 3.3 ($[3,8,9]$). A Riemannian manifold (M, g, ∇) is a statistical manifold admitting torsion if

$$
\begin{equation*}
\left(\nabla_{X} g\right)(Y, Z)-\left(\nabla_{Y} g\right)(X, Z)=-g\left(T^{\nabla}(X, Y), Z\right) \tag{3.2}
\end{equation*}
$$

for $X, Y, Z \in \Gamma(T M)$, where T^{∇} is the torsion tensor of ∇.
In [7] an equivalent condition for (3.2) is introduced.
Proposition $3.4([7])$. A Riemannian manifold (M, g, ∇) where $\nabla=$ $\nabla^{g}+A$ is a statistical manifold admitting torsion if and only if

$$
A(X, Y, Z)=A(Z, Y, X) \quad \text { for } \quad X, Y, Z \in \Gamma(T M)
$$

In Weyl geometry we consider a class of conformal metrics and a torsion-free connection called Weyl connection which preserves the conformal structure. In particular, this connection is known to be uniquely constructed by a fixed vector field V. So, choosing a metric g in the conformal class of metrics we can define the Weyl connection as follows([6]).

Definition 3.5 (Weyl connection, $[1,6]$). Given a Riemannian manifold (M, g) and a fixed vector field V, a Weyl connection ∇^{w} is then defined by

$$
\nabla^{w}=\nabla^{g}+A^{w}
$$

with

$$
A^{w}(X, Y)=g(X, V) Y+g(Y, V) X-g(X, Y) V .
$$

Now considering the vectorial connections as defined in (3.1) we will obtain some types of examples for Statistical manifolds admitting torsion in the next Theorem 3.6.

Theorem 3.6. (i) Consider a vectorial connection $\tilde{\nabla}=\nabla^{g}+\tilde{A}$ by fixed vector fields V_{1}, V_{2}, V_{3}. Then a Riemannian manifold $(M, g, \tilde{\nabla})$ is a statistical manifold admitting torsion if and only if

$$
V_{1}=V_{3} .
$$

(ii) The dual connection $\left(\nabla^{w}\right)^{*}$ of a Weyl connection ∇^{w} is a statistical manifold admitting torsion.

Proof. (i) From Proposition 3.4 we obtain

$$
\begin{aligned}
& A(X, Y, Z)-A(Z, Y, X)=g\left(X, V_{1}\right) g(Y, Z)+g\left(Y, V_{2}\right) g(X, Z)+g\left(Z, V_{3}\right) g(X, Y) \\
& \quad \quad-g\left(Z, V_{1}\right) g(Y, X)-g\left(Y, V_{2}\right) g(Z, X)-g\left(X, V_{3}\right) g(Z, Y) \\
& =\quad g\left(X, V_{1}-V_{3}\right) g(Y, Z)+g\left(Z, V_{3}-V_{1}\right) g(X, Y) \\
& =0
\end{aligned}
$$

So, this is zero for all X, Y, Z if and only if $V_{1}=V_{3}$.
(ii) Consider a Weyl connection $\nabla^{w}=\nabla^{g}+A^{w}$ where for a fixed vector field V

$$
A^{w}(X, Y)=g(X, V) Y+g(Y, V) X-g(X, Y) V
$$

By Proposition 3.2, it holds $\left(\nabla^{w}\right)^{*}=\nabla^{g}+\left(A^{w}\right)^{*}$ with

$$
\left(A^{w}\right)^{*}(X, Y)=g(X,-V) Y+g(Y, V) X+g(X, Y)(-V)
$$

From the above assertion (i), the manifold $\left(M, g,\left(\nabla^{w}\right)^{*}\right)$ is a statistical manifold admitting torsion.

References

[1] I. Agricola, The srní lectures on non-integrable geometries with torsion, Proceedings of the 26th Winter School, Geometry and Physics 2006
[2] S. Amari, Information Geometry and Its Applications, Applied Mathematical Sciences. Springer Japan (2016).
[3] A.M.Blaga, A. Nannicini, Conformal-projective transformations on statistical and semi-Weyl manifolds with torsion arXiv.2209.00689vl, (2022)
[4] O.Calin, C. Udriste, Geometric Modeling in Probability and Statistics, Springer (2013)
[5] E. Cartan, Sur les varietes a connexion affine et la theorie de la relativite generalisee, Ann. Ec. Norm. Sup. 42 (1925), 17-88,
English transl. by Magnon and A. Ashtekar, On manifolds with an affine conneciton and the theory of general relativity, Napoli: Bibliopolis (1986).
[6] G.B.Folland, Weyl Manifolds, J. Diff. Geometry 4 (1970), 145-153.
[7] H. Kim, A note on statistical manifolds with torsion, Communi. Korean Math. Soc., 38 (2023), No. 2, 621-628.
[8] T. Kurose, Statistical manifolds admitting torsion. Geometry and Something. (2007), in Japanese.
[9] H. Matsuzoe Statistical manifolds and affine differential geometry, Advanced Studies in Pure Mathematics 57, Probabilistic Approach to Geometry (2010), 303-321.
[10] A. P. Norden, On pairs of conjugate parallel displacements in multidimensional spaces, In Doklady Akademii nauk SSSR, 49 (1945), 1345-1347.
[11] H. Nagaoka, S. Amari, Differential geometry of smooth families of probability distributions, Technical Report (METR) 82-7, Dept. of Math. Eng. and Instr. Phys. Univ. of Tokyo, (1982)
[12] F. Tricerri, L. Vanhecke, Homogeneous structures on Riemannian manifolds, London Math. Soc., Lecture Notes Series, 83 (1983)

Hwajeong Kim
Department of Mathematics
Hannam National University
Daejeon 306-791, Republic of Korea
E-mail: hwajkim@hnu.ac.kr

[^0]: Received April 06, 2023; Accepted August 07, 2023.
 2020 Mathematics Subject Classification: Primary 53A35, 53B05, 53B15, 53C05, 53 C 80.

 Key words and phrases: metric connection, torsion, Weyl connection, dual connections, statistical manifold.

