
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 36, No. 3, August 2023
http://dx.doi.org/10.14403/jcms.2023.36.3.155

CLASSIFYING PERMUTATIONS USING FULTON’S

ESSENTIAL SET AND MID SET

Sook Min

Abstract. We study permutatons that satisfy a necessary and
sufficient condition for the equality of Fulton’s essential set and the
maximal-inversion-descent(MID) set.

1. Introduction

Let Sn denote the symmetric group on [n] = {1, 2, ..., n}. We write
a permutation of Sn in one-line notation. For example, π = 213 means
π(1) = 2, π(2) = 1, π(3) = 3. The permutation matrix for π ∈ Sn is
an n× n matrix, considered as an n-by-n array of squares in the plane,
where square (i, π(i)) has a dot for every i = 1, 2, ..., n and all other
squares are white. So there is exactly one dot in each row and column.
The inverse π−1 of π ∈ Sn is defined by π−1(ai) = i ⇔ π(i) = ai for
every i = 1, 2, ..., n.

The essential set, together with a rank function, was introduced by
Fulton [3]. The essential set E(π) of π ∈ Sn is defined by

E(π) = {(i, j) ∈ [1, n− 1]2 | π(i) > j, π−1(j) > i,

π(i+ 1) ≤ j, and π−1(j + 1) ≤ i}.
For example, if π = 462513 ∈ S6, then the essential set of π is E(π) =
{(2, 3), (2, 5), (4, 1), (4, 3)}.

We can also represent the essential set E(π) of π ∈ Sn using a per-
mutation matrix as follows. Create the permutation matrix using the
permutation π, and in each square with a dot, shade in the direction east
of the dot and shade in the direction south of the dot. Then a white
(unshaded) square appears in the permutation matrix. We call a white
square a white corner if the squares directly to the right and below of it
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are shaded. The essential set E(π) of π ∈ Sn is defined to be the set of
white corners of the permutation matrix for π.

Baxter permutations are named after a study by Baxter[1]. A Baxter
permutation is exactly a permutation π in Sn that satisfies the following
two conditions: for every 1 ≤ i < j < k < l ≤ n,

(1) if π(i) + 1 = π(l) and π(l) < π(j) then π(k) > π(l), and
(2) if π(l) + 1 = π(i) and π(i) < π(k) then π(j) > π(i).

For example, 2413 and 3142 are the only permutations on four elements
which are not Baxter permutations. We have the following properties
that Baxter permutations can be represented as the essential sets [2].

Theorem 1.1 ([2] Proposition 5.2). A permutation π ∈ Sn is a Bax-
ter permutation if and only if its essential set E(π) has at most one white
corner in each row and column.

Definition 1.2 ([4] Definition 3, [5] Definition 2.1). Let π ∈ Sn.
We say that the pair (i, bi), 1 ≤ i < n, is a maximal-inversion if bi
is the maximum of π(k)’s such that π(k) < π(i) for every k > i. The
maximal-inversion set of π, denoted by MI(π), is the set of all maximal-
inversions.

For example, the maximal-inversion set of π = 462513 ∈ S6 isMI(π) =
{(1, 3), (2, 5), (3, 1), (4, 3)}.

Definition 1.3 ([5] Definition 2.3). A maximal-inversion-descent of
a permutation π in Sn is an element (i, bi) in MI(π) with descent in po-
sition i. The maximal-inversion-descent set of π, denoted by MID(π),
is the set of all maximal-inversion-descents:

MID(π) = {(i, bi) ∈ MI(π) | π(i) > π(i+ 1)}.

For example, the maximal-inversion-descent set of π = 462513 ∈ S6

is MID(π) = {(2, 5), (4, 3)}. Note that the number of the elements
in MID(π) for every permutation π ∈ Sn is equal to the number of
elements in the descent set of π. We have the following properties of the
maximal-inversion-descent (MID) sets and the essential sets [5].

Proposition 1.4 ([5] Proposition 3.4). For every permutation π, we
have MID(π) ⊂ E(π).

Theorem 1.5 ([5] Theorem 3.5). If a permutation π is a Baxter, then
MID(π) = E(π).

The purpose of this paper is to study permutations π ∈ Sn that
satisfy a necessary and sufficient condition in terms of MID(π) = E(π).
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2. Main results

We introduce new definitions associated with Baxter permutations:

Definition 2.1. A c-pseudoBaxter permutation is exactly a permu-
tation π ∈ Sn that satisfies the following two conditions:

(1) for every 1 ≤ i < j < k < l ≤ n,

if π(i) + 1 = π(l) and π(j) > π(l) then π(k) > π(l), and

(2) there exist indices 1 ≤ ic < jc < kc < lc ≤ n such that

π(lc) + 1 = π(ic), π(kc) > π(ic), and π(jc) < π(ic).

Definition 2.2. A r-pseudoBaxter permutation is exactly a permu-
tation π ∈ Sn that satisfies the following two conditions:

(1) for every 1 ≤ i < j < k < l ≤ n,

if π(l) + 1 = π(i) and π(k) > π(i) then π(j) > π(i), and

(2) there exist indices 1 ≤ ir < jr < kr < lr ≤ n such that

π(ir) + 1 = π(lr), π(jr) > π(lr), and π(kr) < π(lr).

Definition 2.3. A rc-pseudoBaxter permutation is exactly a permu-
tation π ∈ Sn that satisfies the following two conditions:

(1) there exist indices 1 ≤ ir < jr < kr < lr ≤ n such that

π(ir) + 1 = π(lr), π(jr) > π(lr), and π(kr) < π(lr), and

(2) there exist indices 1 ≤ ic < jc < kc < lc ≤ n such that

π(lc) + 1 = π(ic), π(kc) > π(ic), and π(jc) < π(ic).

Example 2.4. The permutation π = 31 5 4 2 is a c-pseudoBaxter
permutation because for indices ic = 1, jc = 2, kc = 3, lc = 5 it satisfies
the second condition (2) of Definition 2.1, and because it satisfies the
first condition (1) of Definition 2.1.

Example 2.5. The permutation π = 35 2 4 1 is an r-pseudoBaxter
permutation because for indices ir = 1, jr = 2, kr = 3, lr = 4 it satisfies
the second condition (2) of Definition 2.2, and because it satisfies the
first condition (1) of Definition 2.2.

Example 2.6. The permutation π = 53 1 7 2 8 4 6 is an rc-pseudoBaxter
permutation.

We summarize our main results. As mentioned in Introduction, Min
and Park proved the next theorem.
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Theorem 2.7 ([5] Theorem 3.5). If a permutation π ∈ Sn is a Baxter
permutation, then MID(π) = E(π).

Proposition 2.8 ([2] Proposition 5.2). A permutation π ∈ Sn is a
Baxter permutation if and only if its essential set E(π) has at most one
white corner in each row and column.

Theorem 2.9. If a permutation π ∈ Sn is a c-pseudoBaxter permu-
tation, then MID(π) = E(π).

Proposition 2.10. A permutation π ∈ Sn is a c-pseudoBaxter per-
mutation if and only if its essential set E(π) has at most one white corner
in each row and at least two white corners in some columns.

Note 2.11. The meaning of MID(π) = E(π) of π ∈ Sn is as follows.

(1) The essential set E(π) has at most one white corner in each row
and column, or

(2) The essential set E(π) has at most one white corner in each row
and at least two white corners in some columns.

Then our main theorem:

Theorem 2.12. A permutation π ∈ Sn is a Baxter permutation or a
c-pseudoBaxter permutation if and only if MID(π) = E(π).

Proof. [Proof (necessity)] It is proved by Theorem 2.7 and Theo-
rem 2.9.

[Proof (sufficiency)] If the essential set E(π) satisfies the first con-
dition (1) of Note 2.11, the permutation π is Baxter permutation by
Proposition 2.8. Also, if the essential set E(π) satisfies the second condi-
tion (2) of Note 2.11, the permutation π is c-pseudoBaxter permutation
by Proposition 2.10.

3. Proof of Main results

In this section we prove Proposition 2.8, Theorem 2.9, and Proposi-
tion 2.10.

Lemma 3.1. Let π ∈ Sn. If (i, a), (i, b) ∈ E(π) with a < b, then π
satisfies the second condition (2) of Definition 2.2.

Proof. Since (i, a), (i, b) ∈ E(π), by the definition of the essential set
it can be written as

π(i) > a, π−1(a) > i, π(i+ 1) ≤ a, and π−1(a+ 1) ≤ i, and
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π(i) > b, π−1(b) > i, π(i+ 1) ≤ b, and π−1(b+ 1) ≤ i.

We first claim that the permutation π is represented by

π = · · · (a+ 1) · · ·π(i)π(i+ 1) · · · b · · · ,

where π(i) > b > a+ 1 > π(i+ 1).

(1) π−1(b) > i + 1, since π−1(b) > i, moreover, if π(i + 1) = b, then
a ≥ π(i+1) = b, however, this is a contradiction to the assumption
a < b.

(2) π−1(a + 1) < i, since if π−1(a + 1) = i, then a + 1 = π(i) > b,
however, this is a contradiction to the assumption a < b.

(3) a + 1 < b, since if a + 1 = b, then i < π−1(b) = π−1(a + 1) ≤ i,
however, this is a contradiction.

Let b− a = l, where l ≥ 2. Second, we claim that the permutation π is
represented by, for some k ∈ {1, 2, . . . , l − 1}

π = · · · (a+ k) · · ·π(i)π(i+ 1) · · · (a+ k + 1) · · · ,

where π(i) > b ≥ a+ k + 1 and π(i+ 1) < a+ 1 < a+ k + 1.

(1) π(i), π(i+ 1) /∈ {a+ 1, a+ 2, . . . , a+ l}, since π(i) > b = a+ l and
π(i+ 1) < a+ 1, and

(2) there exists an integer k ∈ {1, 2, . . . , l−1} such that π−1(a+k) < i
and π−1(a+k+1) > i, since consecutive numbers a+1, a+2, . . . , a+
l are placed into the positions π(1), . . . , π(i−1), π(i+2), . . . , π(n),
π−1(a+ 1) < i, and π−1(a+ l)(= π−1(b)) > i.

Thus π satisfies the second condition (2) of Definition 2.2.

Lemma 3.2. Let π ∈ Sn. If (i, b), (j, b) ∈ E(π) for some indices
1 ≤ i < j < n, then π satisfies the second condition (2) of Definition 2.1.

Proof. Since (i, b), (j, b) ∈ E(π), by the definition of the essential set
and inverse we see that (b, i), (b, j) ∈ E(π−1) with 1 ≤ i < j < n. Let
j − i = l, where l ≥ 2. By the proof of Lemma 3.1, the inverse π−1 of π
is represented by, for some k ∈ {1, 2, . . . , l − 1}

π−1 = · · · (i+ k) · · ·π−1(b)π−1(b+ 1) · · · (i+ k + 1) · · ·

where π−1(b) > i+ k + 1 and π−1(b+ 1) < i+ k + 1 (i.e. π−1(b+ 1) ≤
i+ k − 1). So the permutation π can be represented by

π = · · · (b+ 1) · · ·π(i+ k)π(i+ k + 1) · · · b · · · ,

where π(i + k + 1) > b + 1 and π(i + k) < b + 1. Thus, π satisfies the
second condition (b) of Definition 2.1.
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Lemma 3.3. Let π ∈ Sn. If E(π) has at most one white corner in
each row, then π satisfies the first condition (1) of Definition 2.1.

Proof. Suppose not, that is to say, there exist indices 1 ≤ i < j < k <
l ≤ n such that π(i)+1 = π(l), π(j) > π(l), and π(k) < π(l). Choose the
largest j0 (i < j0 < l−1) such that π(j0) > π(l) and choose the smallest
k0(j0 < k0 < l) such that π(k0) < π(l). It is clear that there exist two
indices j0 and k0 and that they satisfy k0 = j0 + 1. Then there exits
(j0, bj0) ∈ MID(π) since π(j0) > π(j0 + 1). Here, bj0 is the maximum
value of π(m), where m > j0 and π(m) < π(j0). So by Proposition 1.4,
(j0, bj0) ∈ E(π).

Now we claim that there exists (j0, a) ∈ E(π) such that a < bj0 .
Choose the largest number a such that a < π(i), π−1(a) > j0, and
π−1(a+1) < j0. We know that such a number a exists: Since π(j0+1) =
π(k0) < π(l) = π(i) + 1 and j0 + 1 ̸= i, it means that π(j0 + 1) < π(i).
So there exists a π(m) such that π(m) < π(i) and m > j0. Also, since
π(i)(> π(m)) is placed into the positions π(1), . . . , π(j0 − 1), it means
that the index of π(m) + 1 is less than j0, there exists π(m). Finally, it
is shown that a has the following properties.

(1) a < bj0 , since
(i) a < π(i),
(ii) π(i) < bj0 , since π(j0) > π(l) = π(i) + 1 and Definition 1.2.

(2) (j0, a) ∈ E(π), since
(i) π(j0) > a, since π(j0) > π(i) + 1 > π(i) > a,
(ii) π−1(a) > j0,
(iii) π(j0 + 1) ≤ a, since π(j0 + 1) = π(k0) < π(i) and the maxi-

mality of a,
(iv) π−1(a+ 1) ≤ j0.

Thus (j0, bj0) and (j0, a) are in E(π) with a < bj0 , however, this is a
contradiction to the hypothesis.

Proof of Proposition 2.8. Suppose that π is a Baxter permutation.
Then by Theorem 2.7, E(π) = MID(π), so let (i, bi), (j, bj) ∈ E(π),
without loss of generality, suppose that 1 ≤ i < j < n and that bi =
bj = b. Then (i, b), (j, b) ∈ MID(π) = E(π). By Lemma 3.2, π satisfies
the second condition (2) of Definition 2.1, however, this is a contradiction
to the assumption that π is a Baxter permutation. Thus i = j and so
E(π) has at most noe white corner in each row and column.

Conversely, suppose that the essential set E(π) has at most one white
corner in each row and column. First, if there is at most one white corner
in each row, then by Lemma 3.3, permutations π satisfy the following
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condition: for all indices 1 ≤ i < j < k < l ≤ n,

if π(i) + 1 = π(l) and π(j) > π(l) then π(k) > π(l).

Second, if there is at most one white corner in each column, then by
considering the inverse of π, π satisfies the following condition: for all
indices 1 ≤ i < j < k < l ≤ n,

if π(l) + 1 = π(i) and π(k) > π(i) then π(j) > π(i).

Thus π is a Baxter permutation.

Proof of Theorem 2.9. Suppose that π is a c-pseudoBaxter permuta-
tion. By Proposition 1.4, it suffices to show that E(π) ⊆ MID(π). Let
(i, a) ∈ E(π). By the definition of the essential set it can be written as

π(i) > a, π−1(a) > i, π(i+ 1) ≤ a, and π−1(a+ 1) ≤ i.

Since π(i) > a ≥ π(i + 1)(i.e. π(i) > π(i + 1)), there exists the pair
(i, bi) ∈ MID(π)(⊂ E(π)). Here, bi is the maximum value of π(m)
where m > i and π(m) < π(i), so bi ≥ a. If we assume that bi > a,
then by Lemma 3.1, π satisfies the second condition (2) of Definition 2.2.
However this is a contradiction to the first condition (1) of Definition 2.1.
Thus a = bi and so (i, a) ∈ MID(π).

Proof of Proposition 2.10. Suppose that π is a c-pseudoBaxter per-
mutation. Then by Theorem 2.9, E(π) = MID(π), so its essential set
has at most one white corner in each row. However, if its essential set
has also at most one white corner in each column then π is a Baxter
permutation which is impossible. So its essential set has at least two
white corners in some columns.

Conversely, first, if its essential set has at most one white corner in
each row, then π satisfies the first condition (1) of Definition 2.1, by
Lemma 3.3. Second, if its essential set has at least two white corners
in some columns, then (i, b), (j, b) ∈ E(π) with 1 ≤ i < j ≤ n. By
Lemma 3.2, π satisfies the second condition (2) of Definition 2.1. Thus
π is a c-pseudoBaxter permutation.

From the above results we deduce the following corollaries.

Corollary 3.4. A permutation is an r-pseudoBaxter permutation if
and only if its essential set has at most one white corner in each column
and at least two white corners in some rows.

Corollary 3.5. A permutation is an rc-pseudoBaxter permutation
if and only if its essential set has at least two white corners in some rows
and some columns.
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