과제정보
저자는 본 연구에 적용된 SIMPLER(Semi-Implicit Method Pressure-Linked Equations Revised) program를 제공해준 한남대학교 화학공학과 김극태 교수에게 감사의 뜻을 표한다.
참고문헌
- A.A. Kaplyanskii, V.V. Kulakov, Yu. F. Markov and C. Barta, "The soft mode properties in Raman spectra of improper ferroelastics Hg2Cl2 an d Hg2Br2", Solid State Commun. 21 (1977) 1023.
- M. Dalmon, S. Nakashima, S. Komatsubara and A. Mitsuishi, "Softening of acoustic and optical modes in ferroelstic phase in Hg2Br2", Solid State Commun. 28 (1978) 815.
- N.B. Singh, M. Gottlieb, A.P. Goutzoulis, R.H. Hopkins and R. Mazelsky, "Mercurous Bromide acoustooptic devices", J. Cryst. Growth 89 (1988) 527.
- N.B. Singh, M. Gottlieb, G.B. Branddt, A.M. Stewart, R.H. Hopkins, R. Mazelsky and M.E. Glicksman, "Growth and characterization of mercurous halide crystals: mercurous bromide system", J. Cryst. Growth 137 (1994) 155.
- J.S. Kim, S.B. Trivedi, J. Soos, N. Gupta and W. Palosz, "Growth of Hg2Cl2 and Hg2Br2 single crystals by physical vapor transport", J. Cryst. Growth 310 (2008) 2457.
- P.M. Amarasinghe, J.S. Kim, H. Chen, S. Trivedi, S.B. Qadri, J. Soo, M. Diestler, D. Zhang, N. Gupta and J.L. Jensen, "Growth of high quality mercurous halide sing crystals by physical vapor transport method for AOM and radiation detection applications", J. Cryst. Growth 450 (2016) 96.
- T.H. Kim, H.T. Lee, Y.M. Kang, G.E. Jang, I.H. Kwon and B. Cho, "In-depth investigation of Hg2Br2 crystal growth and evolution", Materials 12 (2019) 4224.
- O. Kwon, K. Kim, S.G. Woo, G.E. Jang and B. Cho, "Comparative analysis of Hg2Br2 and Hg2BrxCl2-x crystals grown via PVT", Crystals 10 (2020) 1096.
- L. Liu, R. Li, L. Zhang, P. Zhang, G. Zhang, S. Xia and X. Tao, "Long wavelength infrared acousto-optic crystal Hg2Br2: Growth optimization and photosensitivity investigation", J. Alloys Compd. 874 (2021) 159943.
- P.M. Amarasinghe, J.S. Kim and S. Trivedi, "Mercurous Bromide (Hg2Br2) Acousto-Optic Tunable Filters (AOTFs) for the Long Wavelength Infrared (LWIR) Region", J. Electron. Mater. 50 (2021) 5774.
- J.Q. Yang and B.X. Zhao, "Numerical investigation of double-diffusive convection in rectangular cavities with different aspect ratio I: High-accuracy numerical method", Comput. Math. Appl. 94 (2021) 155.
- Q. Liu, X.B. Feng, X.T. Xu and Y.L. He, "Multiple-relaxation-time lattice Boltzmann model for double-diffusive convection with Dufour and Soret effects", Int. J. Heat Mass Transf. 139 (2019) 713.
- M. Chakkingal, R. Voigt, C.R. Kleijn and S. Kenjeres, "Effect of double-diffusive convection with cross gradients on heat and mass transfer in a cubical enclosure with adiabatic cylindrical obstacles", Int. J. Heat Fluid Flow 83 (2020) 108574.
- G.A. Meften, "Conditional and unconditional stability for double diffusive convection when the viscosity has a maximum", Appl. Math. Comput. 392 (2021) 125694.
- S. Hamimid, M. Guellal and M. Bouafia, "Limit the buoyancy ratio in Boussinesq approximation for double-diffusive convection in binary mixture", Phys. Fluids 33 (2021) 036101.
- A. Chauhan, P.M. Sahu and C. Sasmal, "Effect of polymer additives and viscous dissipation on natural convection in a square cavity with differentially heated side walls", Int. J. Heat and Mass Transf. 175 (2021) 121342.
- S.K. Kim, S.Y. Son, K.S. Song, J.-G. Choi and G.T. Kim, "Mercurous bromide (Hg2Br2) crystal growth by physical vapor transport and characterization", J. Korean Cryst. Growth and Cryst. Technol. 12 (2002) 272.
- G.T. Kim, "Growth and characterization of lead bromide: application to mercurous bromide", J. Korean Cryst. Growth and Cryst. Technol. 14 (2004) 50.
- G.T. Kim and M.H. Kwon, "Lead bromide crystal growth from the melt and characterization: the effects of nonlinear thermal boundary conditions on convection during physical vapor crystal growth of mercurous bromide", J. Korean Cryst. Growth and Cryst. Technol. 13 (2004) 187.
- G.T. Kim and M.H. Kwon, "Effects of solutally dominant convection on physical vapor transport for a mixture of Hg2Br2 and Br2 under microgravity environments", Korean Chem. Eng. Res. 52 (2014) 75.
- G.T. Kim an d M.H. Kwon, "Numerical analysis of the influences of impurity on diffusive-convection flow fields by physical vapor transport under terrestrial and microgravity conditions: with application to mercurous chloride", Appl. Chem. Eng. 27 (2016) 335.
- S.H. Ha and G.T. Kim, "Preliminary studies on double-diffusive natural convection during physical vapor transport crystal growth of Hg2Br2 for the spaceflight experiments", Korean Chem. Eng. Res. 57 (2019) 289.
- G.T. Kim, "Study on simultaneous heat and mass transfer during the physical vapor transport of Hg2Br2 un der ㎍ conditions", J. Korean Cryst. Growth and Cryst. Technol. 29 (2019) 107.
- G.T. Kim and M.H. Kwon, "Double-diffusive convection affected by conductive and insulating side walls during physical vapor transport of Hg2Br2", J. Korean Cryst. Growth Cryst. Tech. 30 (2020) 117.
- G.T. Kim and M.H. Kwon, "Studies on Nusselt and Sherwood number for diffusion-advective convection during physical vapor transport of Hg2Br2", J. Korean Cryst. Growth and Cryst. Technol. 31 (2021) 127.
- S.H. Ha and G.T. Kim, "Heat transfer study of double diffusive natural convection in a two-dimensional enclosure at different aspect ratios and thermal Grashof number during the physical vapor transport of mercurous bromide (Hg2Br2): Part I. Heat transfer", J. Korean Cryst. Growth and Cryst. Technol. 32 (2002) 16.
- G.T. Kim and M.H. Kwon, "Fundamental studies on thermosolutal convection in mercurous bromide (Hg2Br2) physical vapor transport processes", J. Korean Cryst. Growth and Cryst. Technol. 33 (2023) 110.
- J.A. Weaver and R. Viskanta, "Natural convection due to horizontal temperature and concentration gradients -1. Variable thermophysical property effects", Int. J. Heat and Mass Transf. 34 (1991) 3107.
- S.V. Patankar, "Numerical Heat Transfer and Fluid Flow", (Hemisphere Publishing Corp., Washington D. C., 1980) p. 131.
- W.M.B. Duval, "Convective effects during the physical vapor transport process- I: Thermal convection", J. Mater. Processing Manu. Sci. 1 (1992) 83.
- W.M.B. Duval, "Convective effects during the physical vapor transport process- II: Thermosolutal convection" J. Mater. Processing Manu. Sci. 1 (1993) 295.
- W.M.B. Duval, "Transition to chaos in the physical vapor transport process - I, proceeding of the ASME-WAM winter Annual Meeting, Symposium in fluid mechanics phenomena in microgravity", ASME-WAM, New Orleans, Louisiana, Nov. 28 - Dec. 3, 1993.
- W.M.B. Duval, N.B. Singh and M.E. Glicksman, "Physical vapor transport of mercurous chloride crystals: design of a microgravity experiment", J. Cryst. Growth 174 (1997) 120.
- W.M.B. Duval, H. Zhong and C. Batur, "Mixing driven by transient buoyancy flows. I. Kinematics", Phys. Fluids 30 (2018) 054104.
- W.M.B. Duval, H. Zhong and C. Batur, "Mixing driven by transient buoyancy flows. II. Flow dynamics", AIP Advances 11 (2021) 085118.