DOI QR코드

DOI QR Code

브로민화 수은(I)(Hg2Br2) 물리적 증착공정의 2차원 밀폐공간에서 이중확산 자연 대류에서의 물질전달 연구: Part II. 물질전달

Mass transfer study of double diffusive natural convection in a two-dimensional enclosure during the physical vapor transport of mercurous bromide (Hg2Br2): Part II. Mass transfer

  • 하성호 (한남대학교 화학공학과)
  • Sung Ho Ha (Department of Chemical Engineering, Hannam University)
  • 투고 : 2023.07.12
  • 심사 : 2023.07.18
  • 발행 : 2023.08.31

초록

2.31 × 104 ≤ Grt ≤ 4.68 × 104의 범위에서 온도 Grashof 수(Grt)의 변화에 대하여, 소스와 결정영역에서의 평균 Nusselt수를 나타내고 있다. 결정영역에서의 평균 Nusselt 수가 소스영역에서의 평균 Nusselt 수 보다 2배 이상 큰 것으로 나타나고 있다. 소스영역에서의 평균 Nusselt 수는 온도 Grashof 수(Grt)에 대하여, 증가하는 경향을 보여주고 있으며, 반면에 결정영역에서의 평균 Nusselt 수는 온도 Grashof 수(Grt)에 대하여, 감소하는 경향을 나타나고 있다. 3.28 × 105 ≤ Grs ≤ 4.43 × 105의 범위에서 농도 Grashof 수(Grs)의 변화에 대하여, 소스와 결정영역에서의 평균 Sherwood 수를 나타내고 있다. 소스영역과 결정영역에서의 평균 Sherwood 수는 농도 Grashof 수(Grs)가 증가함에 따라, 감소하는 경향을 보이고 있다. 결정영역에서의 평균 Sherwood 수는 소스영역에서의 평균 Sherwood 수보다 약 4배 정도 크다.

The average Nusselt numbers in the source and crystal region for the variation of thermal Grashof number (Grt) in the range of 2.31 × 104 ≤ Grt ≤ 4.68 × 104 are obtained through numerical simulations. It is shown the average Nusselt number in the crystal region is more than twice as large as the average Nusselt number in the source region. The average Nusselt number in the source region shows an increasing tendency with increasing the thermal Grashof number, Grt, while the average Nusselt number in the crystal region shows a decreasing tendency with increasing thermal Grashof number, Grt. For the variation of the solutal Grashof number (Grs) in the ran ge of 3.28 × 105 ≤ Grs ≤ 4.43 × 105, the average Sherwood number in the source region and crystal region tends to decrease as the solutal Grashof number, Grs increases. The average Sherwood number in the crystal region is about four times greater than the average Sherwood number in the source region.

키워드

과제정보

저자는 본 연구에 적용된 SIMPLER(Semi-Implicit Method Pressure-Linked Equations Revised) program를 제공해준 한남대학교 화학공학과 김극태 교수에게 감사의 뜻을 표한다.

참고문헌

  1. A.A. Kaplyanskii, V.V. Kulakov, Yu. F. Markov and C. Barta, "The soft mode properties in Raman spectra of improper ferroelastics Hg2Cl2 an d Hg2Br2", Solid State Commun. 21 (1977) 1023. 
  2. M. Dalmon, S. Nakashima, S. Komatsubara and A. Mitsuishi, "Softening of acoustic and optical modes in ferroelstic phase in Hg2Br2", Solid State Commun. 28 (1978) 815. 
  3. N.B. Singh, M. Gottlieb, A.P. Goutzoulis, R.H. Hopkins and R. Mazelsky, "Mercurous Bromide acoustooptic devices", J. Cryst. Growth 89 (1988) 527. 
  4. N.B. Singh, M. Gottlieb, G.B. Branddt, A.M. Stewart, R.H. Hopkins, R. Mazelsky and M.E. Glicksman, "Growth and characterization of mercurous halide crystals: mercurous bromide system", J. Cryst. Growth 137 (1994) 155. 
  5. J.S. Kim, S.B. Trivedi, J. Soos, N. Gupta and W. Palosz, "Growth of Hg2Cl2 and Hg2Br2 single crystals by physical vapor transport", J. Cryst. Growth 310 (2008) 2457. 
  6. P.M. Amarasinghe, J.S. Kim, H. Chen, S. Trivedi, S.B. Qadri, J. Soo, M. Diestler, D. Zhang, N. Gupta and J.L. Jensen, "Growth of high quality mercurous halide sing crystals by physical vapor transport method for AOM and radiation detection applications", J. Cryst. Growth 450 (2016) 96. 
  7. T.H. Kim, H.T. Lee, Y.M. Kang, G.E. Jang, I.H. Kwon and B. Cho, "In-depth investigation of Hg2Br2 crystal growth and evolution", Materials 12 (2019) 4224. 
  8. O. Kwon, K. Kim, S.G. Woo, G.E. Jang and B. Cho, "Comparative analysis of Hg2Br2 and Hg2BrxCl2-x crystals grown via PVT", Crystals 10 (2020) 1096. 
  9. L. Liu, R. Li, L. Zhang, P. Zhang, G. Zhang, S. Xia and X. Tao, "Long wavelength infrared acousto-optic crystal Hg2Br2: Growth optimization and photosensitivity investigation", J. Alloys Compd. 874 (2021) 159943. 
  10. P.M. Amarasinghe, J.S. Kim and S. Trivedi, "Mercurous Bromide (Hg2Br2) Acousto-Optic Tunable Filters (AOTFs) for the Long Wavelength Infrared (LWIR) Region", J. Electron. Mater. 50 (2021) 5774. 
  11. J.Q. Yang and B.X. Zhao, "Numerical investigation of double-diffusive convection in rectangular cavities with different aspect ratio I: High-accuracy numerical method", Comput. Math. Appl. 94 (2021) 155. 
  12. Q. Liu, X.B. Feng, X.T. Xu and Y.L. He, "Multiple-relaxation-time lattice Boltzmann model for double-diffusive convection with Dufour and Soret effects", Int. J. Heat Mass Transf. 139 (2019) 713. 
  13. M. Chakkingal, R. Voigt, C.R. Kleijn and S. Kenjeres, "Effect of double-diffusive convection with cross gradients on heat and mass transfer in a cubical enclosure with adiabatic cylindrical obstacles", Int. J. Heat Fluid Flow 83 (2020) 108574. 
  14. G.A. Meften, "Conditional and unconditional stability for double diffusive convection when the viscosity has a maximum", Appl. Math. Comput. 392 (2021) 125694. 
  15. S. Hamimid, M. Guellal and M. Bouafia, "Limit the buoyancy ratio in Boussinesq approximation for double-diffusive convection in binary mixture", Phys. Fluids 33 (2021) 036101. 
  16. A. Chauhan, P.M. Sahu and C. Sasmal, "Effect of polymer additives and viscous dissipation on natural convection in a square cavity with differentially heated side walls", Int. J. Heat and Mass Transf. 175 (2021) 121342. 
  17. S.K. Kim, S.Y. Son, K.S. Song, J.-G. Choi and G.T. Kim, "Mercurous bromide (Hg2Br2) crystal growth by physical vapor transport and characterization", J. Korean Cryst. Growth and Cryst. Technol. 12 (2002) 272. 
  18. G.T. Kim, "Growth and characterization of lead bromide: application to mercurous bromide", J. Korean Cryst. Growth and Cryst. Technol. 14 (2004) 50. 
  19. G.T. Kim and M.H. Kwon, "Lead bromide crystal growth from the melt and characterization: the effects of nonlinear thermal boundary conditions on convection during physical vapor crystal growth of mercurous bromide", J. Korean Cryst. Growth and Cryst. Technol. 13 (2004) 187. 
  20. G.T. Kim and M.H. Kwon, "Effects of solutally dominant convection on physical vapor transport for a mixture of Hg2Br2 and Br2 under microgravity environments", Korean Chem. Eng. Res. 52 (2014) 75. 
  21. G.T. Kim an d M.H. Kwon, "Numerical analysis of the influences of impurity on diffusive-convection flow fields by physical vapor transport under terrestrial and microgravity conditions: with application to mercurous chloride", Appl. Chem. Eng. 27 (2016) 335. 
  22. S.H. Ha and G.T. Kim, "Preliminary studies on double-diffusive natural convection during physical vapor transport crystal growth of Hg2Br2 for the spaceflight experiments", Korean Chem. Eng. Res. 57 (2019) 289. 
  23. G.T. Kim, "Study on simultaneous heat and mass transfer during the physical vapor transport of Hg2Br2 un der ㎍ conditions", J. Korean Cryst. Growth and Cryst. Technol. 29 (2019) 107. 
  24. G.T. Kim and M.H. Kwon, "Double-diffusive convection affected by conductive and insulating side walls during physical vapor transport of Hg2Br2", J. Korean Cryst. Growth Cryst. Tech. 30 (2020) 117. 
  25. G.T. Kim and M.H. Kwon, "Studies on Nusselt and Sherwood number for diffusion-advective convection during physical vapor transport of Hg2Br2", J. Korean Cryst. Growth and Cryst. Technol. 31 (2021) 127. 
  26. S.H. Ha and G.T. Kim, "Heat transfer study of double diffusive natural convection in a two-dimensional enclosure at different aspect ratios and thermal Grashof number during the physical vapor transport of mercurous bromide (Hg2Br2): Part I. Heat transfer", J. Korean Cryst. Growth and Cryst. Technol. 32 (2002) 16. 
  27. G.T. Kim and M.H. Kwon, "Fundamental studies on thermosolutal convection in mercurous bromide (Hg2Br2) physical vapor transport processes", J. Korean Cryst. Growth and Cryst. Technol. 33 (2023) 110. 
  28. J.A. Weaver and R. Viskanta, "Natural convection due to horizontal temperature and concentration gradients -1. Variable thermophysical property effects", Int. J. Heat and Mass Transf. 34 (1991) 3107. 
  29. S.V. Patankar, "Numerical Heat Transfer and Fluid Flow", (Hemisphere Publishing Corp., Washington D. C., 1980) p. 131. 
  30. W.M.B. Duval, "Convective effects during the physical vapor transport process- I: Thermal convection", J. Mater. Processing Manu. Sci. 1 (1992) 83. 
  31. W.M.B. Duval, "Convective effects during the physical vapor transport process- II: Thermosolutal convection" J. Mater. Processing Manu. Sci. 1 (1993) 295. 
  32. W.M.B. Duval, "Transition to chaos in the physical vapor transport process - I, proceeding of the ASME-WAM winter Annual Meeting, Symposium in fluid mechanics phenomena in microgravity", ASME-WAM, New Orleans, Louisiana, Nov. 28 - Dec. 3, 1993. 
  33. W.M.B. Duval, N.B. Singh and M.E. Glicksman, "Physical vapor transport of mercurous chloride crystals: design of a microgravity experiment", J. Cryst. Growth 174 (1997) 120. 
  34. W.M.B. Duval, H. Zhong and C. Batur, "Mixing driven by transient buoyancy flows. I. Kinematics", Phys. Fluids 30 (2018) 054104. 
  35. W.M.B. Duval, H. Zhong and C. Batur, "Mixing driven by transient buoyancy flows. II. Flow dynamics", AIP Advances 11 (2021) 085118.