Acknowledgement
이 논문은 2022 년도 정부(산업통상자원부)의 재원으로 한국산업기술평가관리원의 지원을 받아 수행된 연구임(No.20022177, 고위험 현장 안전관리를 위한 에지 단말간 AI 협업 기술 기반의 개방형 안전관리 서비스 개발)
References
- Alfred Zimmermann, Rainer Schmidt, Lakhmi C. Jain, Architecting the Digital Transformation - Digital Business, Technology, Decision Support, Management. Intelligent Systems Reference Library 188, ISBN 978-3-030-49639-5, Springer, 2021.
- Voigt, P.; Bussche, A.v.d. The EU General Data Protection Regulation (GDPR): A Practical Guide; Springer Publishing Company, Incorporated: 2017.
- B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas, "Communication-efficient learning of deep networks from decentralized data," in Proc. of the 20th International Conference on Artificial Intelligence and Statistics, 2017, pp. 1273-1282.
- Konecny, J.; McMahan, H.B.; Ramage, D.; Richtárik, P. Federated Optimization: Distributed Machine Learning for On-Device Intelligence. arXiv 2016, arXiv:1610.02527
- Kairouz, Peter, et al. (58 others), "Advances and open problems in federated learning", Foundations and Trends in Machine Learning 14.1-2, 1-210, 2021. https://ml-ops.org/content/references.html https://doi.org/10.1561/2200000083
- R. Shokri, and V. Shmatikov, "Privacy-Preserving Deep Learning," in Proc. of the 22nd ACM SIGSAC Conference on Computer and Communications Security (CCS), 2015, pp. 1310-1321.
- Rasheed, M.A.; Uddin, S.; Tanweer, H.A.; Rasheed, M.A.; Ahmed, M.; Murtaza, H. Data privacy issue in Federated Learning Resolution using Block Chain. VFAST Trans. Softw. Eng. 2021, 9, 51-61. https://doi.org/10.21015/vtse.v9i4.726
- T. Li, A. K. Sahu, A. Talwalkar and V. Smith, "Federated Learning: Challenges, Methods, and Future Directions," in IEEE Signal Processing Magazine, vol. 37, no. 3, pp. 50-60, May 2020, doi: 10.1109/MSP.2020.2975749.
- Flower: A Friendly Federated Learning Framework (https://flower.dev/)
- Sergeev, A., & Balso, M.D. (2018). Horovod: fast and easy distributed deep learning in TensorFlow. ArXiv, abs/1802.05799.