DOI QR코드

DOI QR Code

Analysis of Sulfate Concentration Reduction Using Enzyme Induced Carbonate Precipitation Technique

EICP 공법을 활용한 황산염 농도 저감 분석

  • Kim, Junghoon (Dept. of Civil and Environmental Engrg., Yonsei Univ.) ;
  • Kim, Daehyun (Dept. of Civil and Environmental Engrg., Yonsei Univ.) ;
  • Yun, Tae Sup (Dept. of Civil and Environmental Engrg., Yonsei Univ.)
  • 김정훈 (연세대학교 건설환경공학과) ;
  • 김대현 (연세대학교 건설환경공학과) ;
  • 윤태섭 (연세대학교 건설환경공학과 )
  • Received : 2023.06.14
  • Accepted : 2023.07.13
  • Published : 2023.08.31

Abstract

This study aimed to evaluate the sulfate removal capacity of the enzyme-induced carbonate precipitation (EICP) technique through the chemical precipitation of sulfate with calcium ions. The optimal EICP recipe was obtained to retain the excess calcium cations in the solution for the generation of a sufficient amount of calcium carbonate (CaCO3) mineral. The effect of gypsum precipitation on the EICP-treated sand specimen was investigated by measuring the shear wave velocity and by visual inspection via scanning electron microscopy. The EICP solution using soybean crude urease, as an alternative to laboratory-grade purified urease, exhibited a lower sulfate removal efficiency at a similar CaCO3 production rate compared with the optimal EICP recipe because of soybean impurities.

본 연구는 매립지 침출수 내 황산염 농도를 저감하기 위해 친환경 지반개량 공법인 Enzyme Induced Carbonate Precipitation(EICP) 공법을 활용하였다. 황산염의 화학적 침전을 유도하기 위해 충분한 탄산칼슘을 생성함과 동시에 여분의 칼슘 이온을 남길 수 있는 최적의 EICP 혼합비가 계산되었다. 최적 혼합비로 처리된 사질토 시편에서 황산염 침전이 전단 강성도에 미치는 영향을 확인하고자 전단파 속도를 측정하였고 전단파 속도 측정은 EICP 반응 및 황산염 반응 시간동안 수행되었다. 실험 결과, 생성된 침전물에 따른 전단 강성도의 발달을 확인하였고 주사전자현미경(SEM)으로 침전물의 유형 및 패턴을 시각적으로 관찰하였다. 고순도 우레아제의 대체제로서 백태가루를 효소로 사용한 EICP 용액의 경우 고순도 EICP 용액과 동일한 탄산칼슘 생성 효율에서 보다 낮은 황산염 제거 효율을 보였는데 이는 백태가루에 포함된 불순물이 석고의 침전을 방해하기 때문이다.

Keywords

Acknowledgement

본 연구는 한국연구재단(NRF)(No. NRF-2021R1A5A1032433)의 지원사업으로 이루어진 것으로 해당 부처에 감사드립니다.

References

  1. Abbas, A. A., Jingsong, G., Ping, L. Z., Ya, P. Y., and Al-Rekabi, W. S. (2009), Review on Landfill Leachate Treatments, American Journal of Applied Sciences, Vol.6, No.4, pp.672-684. https://doi.org/10.3844/ajas.2009.672.684 
  2. Aygun, A., Dogan, S., Argun, M. E., and Ates, H. (2019), Removal of Sulphate from Landfill Leachate by Crystallization, Environmental Engineering Research, Vol.24, No.1, pp.24-30. https://doi.org/10.4491/eer.2017.179 
  3. Chang, I., Im, J., Lee, S. W., and Cho, G. C. (2017), Strength Durability of Gellan Gum Biopolymer-treated Korean Sand with Cyclic Wetting and Drying, Construction and Building Materials, Vol.143, pp.210-221. https://doi.org/10.1016/j.conbuildmat.2017.02.061 
  4. Chen, W., Luo, Y., Ran, G., and Li, Q. (2019), An Investigation of Refractory Organics in Membrane Bioreactor Effluent Following the Treatment of Landfill Leachate by the O3/H2O2 and MW/PS Processes, Waste Management, Vol.97, pp.1-9. https://doi.org/10.1016/j.wasman.2019.07.016 
  5. Chien, L., Robertson, H., and Gerrard, J. W. (1968), Infantile Gastroenteritis due to Water with High Sulfate Content, Canadian Medical Association Journal, Vol.99, No.3, pp.102-104. 
  6. Dai, Z., Zhao, Y., Paudyal, S., Wang, X., Dai, C., Ko, S., Li, W., Kan, A. T., and Tomson, M. B. (2022), Gypsum Scale Formation and Inhibition Kinetics with Implications in Membrane System, Water Research, 225(May), 119166. https://doi.org/10.1016/j.watres.2022.119166 
  7. Dakhane, A., Das, S., Hansen, H., O'Donnell, S., Hanoon, F., Rushton, A., Perla, C., and Neithalath, N. (2018), Crack Healing in Cementitious Mortars Using Enzyme-Induced Carbonate Precipitation: Quantification Based on Fracture Response, Journal of Materials in Civil Engineering, Vol.30, No.4, pp.1-10. https://doi.org/10.1061/(asce)mt.1943-5533.0002218 
  8. DeJong, J. T., Fritzges, M. B., and Nusslein, K. (2006), Microbially Induced Cementation to Control Sand Response to Undrained Shear, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No.11, pp.1381-1392. https://doi.org/10.1061/(asce)1090-0241(2006)132:11(1381) 
  9. DeJong, J. T., Mortensen, B. M., Martinez, B. C., and Nelson, D. C. (2010), Bio-mediated Soil Improvement, Ecological Engineering, Vol.36, No.2, pp.197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029 
  10. Dilrukshi, R. A. N., Nakashima, K., and Kawasaki, S. (2018), Soil Improvement Using Plant-derived Urease-induced Calcium Carbonate Precipitation, Soils and Foundations, Vol.58, No.4, pp.894-910. https://doi.org/10.1016/j.sandf.2018.04.003 
  11. Dunsmore, B. C., Bass, C. J., and Lappin-Scott, H. M. (2004), A Novel Approach to Investigate Biofilm Accumulation and Bacterial Transport in Porous Matrices, Environmental Microbiology, Vol.6, No.2, pp.183-187. https://doi.org/10.1046/j.1462-2920.2003.00546.x 
  12. Ferreira, A. M., Vikulina, A. S., and Volodkin, D. (2020), CaCO3 Crystals as Versatile Carriers for Controlled Delivery of Antimicrobials, Journal of Controlled Release, Vol.328(July), pp.470-489. https://doi.org/10.1016/j.jconrel.2020.08.061 
  13. Ilhan, F., Kurt, U., Apaydin, O., and Gonullu, M. T. (2008), Treatment of Leachate by Electrocoagulation Using Aluminum and Iron Electrodes, Journal of Hazardous Materials, Vol.154, No.1-3, pp.381-389. https://doi.org/10.1016/j.jhazmat.2007.10.035 
  14. Jin, Z., Ci, M., Yang, W., Shen, D., Hu, L., Fang, C., and Long, Y. (2020), Sulfate Reduction behavior in the Leachate Saturated Zone of Landfill Sites, Science of the Total Environment, 730, 138946. https://doi.org/10.1016/j.scitotenv.2020.138946 
  15. Khodadadi Tirkolaei, H., Javadi, N., Krishnan, V., Hamdan, N., and Kavazanjian, E. (2020), Crude Urease Extract for Biocementation, Journal of Materials in Civil Engineering, Vol.32, No.12, pp.1-12. https://doi.org/10.1061/(asce)mt.1943-5533.0003466 
  16. Kim, D. H., Mahabadi, N., Jang, J., and van Paassen, L. A. (2020), Assessing the Kinetics and Pore-Scale Characteristics of Biological Calcium Carbonate Precipitation in Porous Media using a Microfluidic Chip Experiment, Water Resources Research, Vol.56, No.2, pp.1-19. https://doi.org/10.1029/2019WR025420 
  17. Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., and Christensen, T. H. (2002), Present and Long-term Composition of MSW Landfill Leachate: A Review, Critical Reviews in Environmental Science and Technology, Vol.32, No.4, pp.297-336. https://doi.org/10.1080/10643380290813462 
  18. Kumar, S. S. and Bishnoi, N. R. (2017), Coagulation of Landfill Leachate by FeCl3: Process Optimization Using Box-Behnken Design (RSM), In Applied Water Science (Vol.7, Issue 4, pp.1943-1953). https://doi.org/10.1007/s13201-015-0372-1 
  19. Lee, M. J., Choo, H., Kim, J., and Lee, W. (2011), Effect of Artificial Cementation on Cone Tip Resistance and Small Strain Shear Modulus of Sand, Bulletin of Engineering Geology and the Environment, Vol.70, No.2, pp.193-201. https://doi.org/10.1007/s10064-010-0312-0 
  20. Lens, P. N. L., Visser, A., Janssen, A. J. H., Hulshoff Pol, L. W., and Lettinga, G. (1998), Biotechnological Treatment of Sulfate-rich Wastewaters, Critical Reviews in Environmental Science and Technology, Vol.28, No.1, pp.41-88. https://doi.org/10.1080/10643389891254160 
  21. Li, W., Zhang, Y., and Achal, V. (2022), Mechanisms of Cadmium Retention on Enzyme-induced Carbonate Precipitation (EICP) of Ca/Mg: Nucleation, Chemisorption, and Co-precipitation, Journal of Environmental Chemical Engineering, Vol.10, No.3, 107507. https://doi.org/10.1016/j.jece.2022.107507 
  22. Liang, H. C. (2014), Trends in Mine Water Treatment, Mining Magazine, MARCH, pp.83-85. 
  23. Meng, H., Shu, S., Gao, Y., Yan, B., and He, J. (2021), Multiple-phase Enzyme-induced Carbonate Precipitation (EICP) Method for Soil Improvement, Engineering Geology, Vol.294, No.1, 106374. https://doi.org/10.1016/j.enggeo.2021.106374 
  24. Miyake, M., Kim, D., and Hata, T. (2022), Casein-assisted Enhancement of the Compressive Strength of Biocemented Sand, In Scientific Reports (Vol.12, Issue 1). https://doi.org/10.1038/s41598-022-16879-9 
  25. Naka, K. and Chujo, Y. (2001), Control of Crystal Nucleation and Growth of Calcium Carbonate by Synthetic Substrates, Chemistry of Materials, Vol.13, No.10, pp.3245-3259. https://doi.org/10.1021/cm011035g 
  26. Nakano, A. (2018), Microbe-induced Desaturation of Sand Using Pore Pressure Development by Way of Denitrification, Geotechnique Letters, Vol.8, No.1, pp.1-4. https://doi.org/10.1680/jgele.17.00039 
  27. Nicoleau, L., Van Driessche, A. E. S., and Kellermeier, M. (2019), A Kinetic Analysis of the Role of Polymers in Mineral Nucleation, The Example of Gypsum, Cement and Concrete Research, 124 (March), 105837. https://doi.org/10.1016/j.cemconres.2019.105837 
  28. Ramalho, M., Jovanovic, T., Afonso, A., Baia, A., Lopes, A., Fernandes, A., Almeida, A., and Carvalho, F. (2023), Landfill Leachate Treatment by Immediate One-step Lime Precipitation, Carbonation, and Phytoremediation Fine-tuning, Environmental Science and Pollution Research, Vol.30, No.4, pp.8647-8656. https://doi.org/10.1007/s11356-022-18729-7 
  29. Rao, S. M. and Sridharan, A. (1984), Mechanism of Sulfate Adsorption by Kaolinite, Clays & Clay Minerals, Vol.32, No.5, pp.414-418. https://doi.org/10.1346/CCMN.1984.0320510 
  30. Sharma, D., Chaudhari, P. K., Dubey, S., and Prajapati, A. K. (2020), Electrocoagulation Treatment of Electroplating Wastewater: A Review, Journal of Environmental Engineering, Vol.146, No.10. https://doi.org/10.1061/(asce)ee.1943-7870.0001790 
  31. Sinharoy, A., Pakshirajan, K., and Lens, P. N. L. (2020), Biological Sulfate Reduction Using Gaseous Substrates To Treat Acid Mine Drainage, Current Pollution Reports, Vol.6, No.4, pp.328-344. https://doi.org/10.1007/s40726-020-00160-6 
  32. Song, J. Y., Ha, S. J., Jang, J. W., and Yun, T. S. (2020), Analysis of Improved Shear Stiffness and Strength for Sandy Soils Treated by EICP, Journal of the Korean Geotechnical Society, Vol.36, No.1, pp.17-28.  https://doi.org/10.7843/KGS.2020.36.1.17
  33. Song, J. Y., Ha, S. J., Sim, Y., Jin, K. N., and Yun, T. S. (2019), Fine Dust Suppression by Enzyme Induced Carbonate Precipitation: Indoor Experiment and Field Application, Journal of the Korean Geotechnical Society, Vol.35, No.10, pp.67-78.  https://doi.org/10.7843/KGS.2019.35.10.67
  34. Sun, X., Miao, L., Wang, H., Wu, L., Fan, G., and Xia, J. (2022), Sand Foreshore Slope Stability and Erosion Mitigation Based on Microbiota and Enzyme Mix-Induced Carbonate Precipitation, Journal of Geotechnical and Geoenvironmental Engineering, Vol.148, No.8, pp.1-14. https://doi.org/10.1061/(asce)gt.1943-5606.0002839 
  35. Tejera, J., Hermosilla, D., Miranda, R., Gasco, A., Alonso, V., Negro, C., and Blanco, A. (2020), Assessing an Integral Treatment for Landfill Leachate Reverse Osmosis Concentrate, Catalysts, Vol.10, No.12, pp.1-17. https://doi.org/10.3390/catal10121389 
  36. van Paassen, L. A., Ghose, R., van der Linden, T. J. M., van der Star, W. R. L., and van Loosdrecht, M. C. M. (2010), Quantifying Biomediated Ground Improvement by Ureolysis: Large-Scale Biogrout Experiment, Journal of Geotechnical and Geoenvironmental Engineering, Vol.136, No.12, pp.1721-1728. https://doi.org/10.1061/(asce)gt.1943-5606.0000382 
  37. Whiffin, V. S., van Paassen, L. A., and Harkes, M. P. (2007), Microbial Carbonate Precipitation as a Soil Improvement Technique, Geomicrobiology Journal, Vol.24, No.5, pp.417-423. https://doi.org/10.1080/01490450701436505