DOI QR코드

DOI QR Code

Effect of Bevacizumab Treatment in Cerebral Radiation Necrosis : Investigation of Response Predictors in a Single-Center Experience

  • Shin Heon Lee (Department of Neurosurgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine) ;
  • Jung Won Choi (Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Doo-Sik Kong (Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Ho Jun Seol (Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Do-Hyun Nam (Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Jung-Il Lee (Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • Received : 2022.10.24
  • Accepted : 2023.01.12
  • Published : 2023.09.01

Abstract

Objective : Bevacizumab is a feasible option for treating cerebral radiation necrosis (RN). We investigated the clinical outcome of RN after treatment with bevacizumab and factors related to the initial response and the sustained effect. Methods : Clinical data of 45 patients treated for symptomatic RN between September 2019 and February 2021 were retrospectively collected. Bevacizumab (7.5 mg/kg) was administered at 3-week intervals with a maximum four-cycle schedule. Changes in the lesions magnetic resonance image (MRI) scans were examined for the response evaluation. The subgroup analysis was performed based on the initial response and the long-term maintenance of the effect. Results : Of the 45 patients, 36 patients (80.0%) showed an initial response, and eight patients (17.8%) showed delayed worsening of the corresponding lesion. The non-responders showed a significantly higher incidence of diffusion restriction on MRI than the responders (100.0% vs. 25.0%, p<0.001). The delayed worsening group showed a significantly higher proportion of glioma pathology than the maintenance group (87.5% vs. 28.6%, p=0.005). Cumulative survival rates with sustained effect were significantly higher in the groups with non-glioma pathology (p=0.019) and the absence of diffusion restriction (p<0.001). Pathology of glioma and diffusion restriction in MRI were the independent risk factors for non-response or delayed worsening after initial response. Conclusion : The initial response of RN to bevacizumab was favorable, with improvement in four-fifths of the patients. However, a certain proportion of patients showed non-responsiveness or delayed exacerbations. Bevacizumab may be more effective in treating RN in patients with non-glioma pathology and without diffusion restriction in the MRI.

Keywords

References

  1. Alexiou GA, Tsiouris S, Kyritsis AP, Voulgaris S, Argyropoulou MI, Fotopoulos AD : Glioma recurrence versus radiation necrosis: accuracy of current imaging modalities. J Neurooncol 95 : 1-11, 2009 https://doi.org/10.1007/s11060-009-9897-1
  2. Asao C, Korogi Y, Kitajima M, Hirai T, Baba Y, Makino K, et al. : Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol 26 : 1455-1460, 2005
  3. Baroni LV, Alderete D, Solano-Paez P, Rugilo C, Freytes C, Laughlin S, et al. : Bevacizumab for pediatric radiation necrosis. Neurooncol Pract 7 : 409-414, 2020
  4. Boothe D, Young R, Yamada Y, Prager A, Chan T, Beal K : Bevacizumab as a treatment for radiation necrosis of brain metastases post stereotactic radiosurgery. Neuro Oncol 15 : 1257-1263, 2013 https://doi.org/10.1093/neuonc/not085
  5. Brandes AA, Tosoni A, Spagnolli F, Frezza G, Leonardi M, Calbucci F, et al. : Disease progression or pseudoprogression after concomitant radio-chemotherapy treatment: pitfalls in neurooncology. Neuro Oncol 10 : 361-367, 2008 https://doi.org/10.1215/15228517-2008-008
  6. Chan YL, Yeung DK, Leung SF, Chan PN : Diffusion-weighted magnetic resonance imaging in radiation-induced cerebral necrosis. Apparent diffusion coefficient in lesion components. J Comput Assist Tomogr 27 : 674-680, 2003 https://doi.org/10.1097/00004728-200309000-00003
  7. Chuba PJ, Aronin P, Bhambhani K, Eichenhorn M, Zamarano L, Cianci P, et al. : Hyperbaric oxygen therapy for radiation-induced brain injury in children. Cancer 80 : 2005-2012, 1997 https://doi.org/10.1002/(SICI)1097-0142(19971115)80:10<2005::AID-CNCR19>3.0.CO;2-0
  8. Crossen JR, Garwood D, Glatstein E, Neuwelt EA : Neurobehavioral sequelae of cranial irradiation in adults: a review of radiation-induced encephalopathy. J Clin Oncol 12 : 627-642, 1994 https://doi.org/10.1200/JCO.1994.12.3.627
  9. Dahl NA, Liu AK, Foreman NK, Widener M, Fenton LZ, Macy ME : Bevacizumab in the treatment of radiation injury for children with central nervous system tumors. Childs Nerv Syst 35 : 2043-2046, 2019 https://doi.org/10.1007/s00381-019-04304-y
  10. Giglio P, Gilbert MR : Cerebral radiation necrosis. Neurologist 9 : 180-188, 2003 https://doi.org/10.1097/01.nrl.0000080951.78533.c4
  11. Glantz MJ, Burger PC, Friedman AH, Radtke RA, Massey EW, Schold SC Jr : Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology 44 : 2020-2027, 1994 https://doi.org/10.1212/WNL.44.11.2020
  12. Gonzalez J, Kumar AJ, Conrad CA, Levin VA : Effect of bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys 67 : 323-326, 2007 https://doi.org/10.1016/j.ijrobp.2006.10.010
  13. Hein PA, Eskey CJ, Dunn JF, Hug EB : Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol 25 : 201-209, 2004
  14. Jabeen S, Arbind A, Kumar D, Singh PK, Saini J, Sadashiva N, et al. : Combined amino acid PET-MRI for identifying recurrence in post-treatment gliomas: together we grow. Eur J Hybrid Imaging 5 : 15, 2021
  15. Kazda T, Bulik M, Pospisil P, Lakomy R, Smrcka M, Slampa P, et al. : Advanced MRI increases the diagnostic accuracy of recurrent glioblastoma: single institution thresholds and validation of MR spectroscopy and diffusion weighted MR imaging. Neuroimage Clin 11 : 316-321, 2016 https://doi.org/10.1016/j.nicl.2016.02.016
  16. Kim JH, Chung YG, Kim CY, Kim HK, Lee HK : Upregulation of VEGF and FGF2 in normal rat brain after experimental intraoperative radiation therapy. J Korean Med Sci 19 : 879-886, 2004 https://doi.org/10.3346/jkms.2004.19.6.879
  17. Kim S, Kim SH, Kim JS : Coexisting cytotoxic and vasogenic edema in Wernicke encephalopathy. Neurol Sci 35 : 635-636, 2014 https://doi.org/10.1007/s10072-014-1639-2
  18. Koch S, Rabinstein A, Falcone S, Forteza A : Diffusion-weighted imaging shows cytotoxic and vasogenic edema in eclampsia. AJNR Am J Neuroradiol 22 : 1068-1070, 2001
  19. Kotsarini C, Griffiths PD, Wilkinson ID, Hoggard N : A systematic review of the literature on the effects of dexamethasone on the brain from in vivo human-based studies: implications for physiological brain imaging of patients with intracranial tumors. Neurosurgery 67 : 1799-1815; discussion 1815, 2010 https://doi.org/10.1227/NEU.0b013e3181fa775b
  20. Leber KA, Eder HG, Kovac H, Anegg U, Pendl G : Treatment of cerebral radionecrosis by hyperbaric oxygen therapy. Stereotact Funct Neurosurg 70 Suppl 1 : 229-236, 1998 https://doi.org/10.1159/000056426
  21. Lee AW, Ng SH, Ho JH, Tse VK, Poon YF, Tse CC, et al. : Clinical diagnosis of late temporal lobe necrosis following radiation therapy for nasopharyngeal carcinoma. Cancer 61 : 1535-1542, 1988 https://doi.org/10.1002/1097-0142(19880415)61:8<1535::AID-CNCR2820610809>3.0.CO;2-E
  22. Lee WJ, Choi SH, Park CK, Yi KS, Kim TM, Lee SH, et al. : Diffusion-weighted MR imaging for the differentiation of true progression from pseudoprogression following concomitant radiotherapy with temozolomide in patients with newly diagnosed high-grade gliomas. Acad Radiol 19 : 1353-1361, 2012
  23. Letarte N, Bressler LR, Villano JL : Bevacizumab and central nervous system (CNS) hemorrhage. Cancer Chemother Pharmacol 71 : 1561-1565, 2013 https://doi.org/10.1007/s00280-013-2155-4
  24. Levin VA, Bidaut L, Hou P, Kumar AJ, Wefel JS, Bekele BN, et al. : Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 79 : 1487-1495, 2011 https://doi.org/10.1016/j.ijrobp.2009.12.061
  25. Li YQ, Chen P, Jain V, Reilly RM, Wong CS : Early radiation-induced endothelial cell loss and blood-spinal cord barrier breakdown in the rat spinal cord. Radiat Res 161 : 143-152, 2004 https://doi.org/10.1667/RR3117
  26. Liao G, Khan M, Zhao Z, Arooj S, Yan M, Li X : Bevacizumab treatment of radiation-induced brain necrosis: a systematic review. Front Oncol 11 : 593449, 2021
  27. Liu AK, Macy ME, Foreman NK : Bevacizumab as therapy for radiation necrosis in four children with pontine gliomas. Int J Radiat Oncol Biol Phys 75 : 1148-1154, 2009 https://doi.org/10.1016/j.ijrobp.2008.12.032
  28. Lovblad KO, Bassetti C, Schneider J, Ozdoba C, Remonda L, Schroth G : Diffusion-weighted MRI suggests the coexistence of cytotoxic and vasogenic oedema in a case of deep cerebral venous thrombosis. Neuroradiology 42 : 728-731, 2000 https://doi.org/10.1007/s002340000395
  29. Matuschek C, Bolke E, Nawatny J, Hoffmann TK, Peiper M, Orth K, et al. : Bevacizumab as a treatment option for radiation-induced cerebral necrosis. Strahlenther Onkol 187 : 135-139, 2011 https://doi.org/10.1007/s00066-010-2184-4
  30. Michinaga S, Koyama Y : Pathogenesis of brain edema and investigation into anti-edema drugs. Int J Mol Sci 16 : 9949-9975, 2015 https://doi.org/10.3390/ijms16059949
  31. Muhsin M, Graham J, Kirkpatrick P : Bevacizumab. Nat Rev Drug Discov 3 : 995-996, 2004 https://doi.org/10.1038/nrd1601
  32. Nonoguchi N, Miyatake S, Fukumoto M, Furuse M, Hiramatsu R, Kawabata S, et al. : The distribution of vascular endothelial growth factor-producing cells in clinical radiation necrosis of the brain: pathological consideration of their potential roles. J Neurooncol 105 : 423-431, 2011 https://doi.org/10.1007/s11060-011-0610-9
  33. Nordal RA, Nagy A, Pintilie M, Wong CS : Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: a role for vascular endothelial growth factor. Clin Cancer Res 10 : 3342-3353, 2004 https://doi.org/10.1158/1078-0432.CCR-03-0426
  34. Rahmathulla G, Marko NF, Weil RJ : Cerebral radiation necrosis: a review of the pathobiology, diagnosis and management considerations. J Clin Neurosci 20 : 485-502, 2013 https://doi.org/10.1016/j.jocn.2012.09.011
  35. Raimbault A, Cazals X, Lauvin MA, Destrieux C, Chapet S, Cottier JP : Radionecrosis of malignant glioma and cerebral metastasis: a diagnostic challenge in MRI. Diagn Interv Imaging 95 : 985-1000, 2014 https://doi.org/10.1016/j.diii.2014.06.013
  36. Rock JP, Scarpace L, Hearshen D, Gutierrez J, Fisher JL, Rosenblum M, et al. : Associations among magnetic resonance spectroscopy, apparent diffusion coefficients, and image-guided histopathology with special attention to radiation necrosis. Neurosurgery 54 : 1111-1117; discussion 1117-1119, 2004
  37. Schaefer PW, Ozsunar Y, He J, Hamberg LM, Hunter GJ, Sorensen AG, et al. : Assessing tissue viability with MR diffusion and perfusion imaging. AJNR Am J Neuroradiol 24 : 436-443, 2003
  38. Shah R, Vattoth S, Jacob R, Manzil FF, O'Malley JP, Borghei P, et al. : Radiation necrosis in the brain: imaging features and differentiation from tumor recurrence. Radiographics 32 : 1343-1359, 2012 https://doi.org/10.1148/rg.325125002
  39. Siu A, Wind JJ, Iorgulescu JB, Chan TA, Yamada Y, Sherman JH : Radiation necrosis following treatment of high grade glioma--a review of the literature and current understanding. Acta Neurochir (Wien) 154 : 191-201; discussion 201, 2012 https://doi.org/10.1007/s00701-011-1228-6
  40. Stadnik TW, Chaskis C, Michotte A, Shabana WM, van Rompaey K, Luypaert R, et al. : Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. AJNR Am J Neuroradiol 22 : 969-976, 2001
  41. Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I, Kira T, et al. : Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 21 : 901-909, 2000
  42. Torcuator R, Zuniga R, Mohan YS, Rock J, Doyle T, Anderson J, et al. : Initial experience with bevacizumab treatment for biopsy confirmed cerebral radiation necrosis. J Neurooncol 94 : 63-68, 2009 https://doi.org/10.1007/s11060-009-9801-z
  43. Wang S, Chen Y, Lal B, Ford E, Tryggestad E, Armour M, et al. : Evaluation of radiation necrosis and malignant glioma in rat models using diffusion tensor MR imaging. J Neurooncol 107 : 51-60, 2012 https://doi.org/10.1007/s11060-011-0719-x
  44. Xu Y, Rong X, Hu W, Huang X, Li Y, Zheng D, et al. : Bevacizumab monotherapy reduces radiation-induced brain necrosis in nasopharyngeal carcinoma patients: a randomized controlled trial. Int J Radiat Oncol Biol Phys 101 : 1087-1095, 2018 https://doi.org/10.1016/j.ijrobp.2018.04.068
  45. Yang X, Ren H, Fu J : Treatment of radiation-induced brain necrosis. Oxid Med Cell Longev 2021 : 4793517, 2021
  46. Zakhari N, Taccone MS, Torres C, Chakraborty S, Sinclair J, Woulfe J, et al. : Diagnostic accuracy of centrally restricted diffusion in the differentiation of treatment-related necrosis from tumor recurrence in high-grade gliomas. AJNR Am J Neuroradiol 39 : 260-264, 2018 https://doi.org/10.3174/ajnr.A5485
  47. Zhang H, Ma L, Shu C, Wang YB, Dong LQ : Diagnostic accuracy of diffusion MRI with quantitative ADC measurements in differentiating glioma recurrence from radiation necrosis. J Neurol Sci 351 : 65-71, 2015 https://doi.org/10.1016/j.jns.2015.02.038