DOI QR코드

DOI QR Code

Regorafenib prevents the development of emphysema in a murine elastase model

  • Kwangseok Oh (Department of Biochemistry, College of Medicine, and Medical Research Center, Chungbuk National University) ;
  • Gun-Wu Lee (Department of Biochemistry, College of Medicine, and Medical Research Center, Chungbuk National University) ;
  • Han-Byeol Kim (Department of Biochemistry, College of Medicine, and Medical Research Center, Chungbuk National University) ;
  • Jin-Hee Park (Department of Biochemistry, College of Medicine, and Medical Research Center, Chungbuk National University) ;
  • Eun-Young Shin (Department of Biochemistry, College of Medicine, and Medical Research Center, Chungbuk National University) ;
  • Eung-Gook Kim (Department of Biochemistry, College of Medicine, and Medical Research Center, Chungbuk National University)
  • Received : 2023.05.03
  • Accepted : 2023.06.26
  • Published : 2023.08.31

Abstract

Emphysema is a chronic obstructive lung disease characterized by inflammation and enlargement of the air spaces. Regorafenib, a potential senomorphic drug, exhibited a therapeutic effect in porcine pancreatic elastase (PPE)-induced emphysema in mice. In the current study we examined the preventive role of regorafenib in development of emphysema. Lung function tests and morphometry showed that oral administration of regorafenib (5 mg/kg/day) for seven days after instillation of PPE resulted in attenuation of emphysema. Mechanistically, regorafenib reduced the recruitment of inflammatory cells, particularly macrophages and neutrophils, in bronchoalveolar lavage fluid. In agreement with these findings, measurements using a cytokine array and ELISA showed that expression of inflammatory mediators including interleukin (IL)-1β, IL-6, and CXCL1/KC, and tissue inhibitor of matrix metalloprotease-1 (TIMP-1), was downregulated. The results of immunohistochemical analysis confirmed that expression of IL-6, CXCL1/KC, and TIMP-1 was reduced in the lung parenchyma. Collectively, the results support the preventive role of regorafenib in development of emphysema in mice and provide mechanistic insights into prevention strategies.

Keywords

Acknowledgement

This work was partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (2020R1A5A2017476), Bio&Medical Technology Development Program (2017M3A9D8063627), and the academic research program of Chungbuk National University in 2022.

References

  1. Turino GM (2006) Emphysema in COPD: consequences and causes. Thorax 61, 1031-1032 https://doi.org/10.1136/thx.2006.066308
  2. Abboud RT and Vimalanathan S (2008) Pathogenesis of COPD. Part I. The role of protease-antiprotease imbalance in emphysema. Int J Tuberc Lung Dis 12, 361-367
  3. Sharafkhaneh A, Hanania NA and Kim V (2008) Pathogenesis of emphysema: from the bench to the bedside. Proc Am Thorac Soc 5, 475-477 https://doi.org/10.1513/pats.200708-126ET
  4. Shapiro SD (2003) Proteolysis in the lung. Eur Respir J Suppl 44, 30s-32s https://doi.org/10.1183/09031936.03.00000903a
  5. Hautamaki RD, Kobayashi DK, Senior RM and Shapiro SD (1997) Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277, 2002-2004 https://doi.org/10.1126/science.277.5334.2002
  6. Kirschvink N, Martin N, Fievez L, Smith N, Marlin D and Gustin P (2006) Airway inflammation in cadmium-exposed rats is associated with pulmonary oxidative stress and emphysema. Free Radic Res 40, 241-250 https://doi.org/10.1080/10715760500494657
  7. Venuta F, Rendina EA, De Giacomo T et al (2006) Bronchoscopic procedures for emphysema treatment. Eur J Cardiothorac Surg 29, 281-287 https://doi.org/10.1016/j.ejcts.2005.12.009
  8. Herranz N, Gallage S, Mellone M et al (2015) mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol 17, 1205-1217 https://doi.org/10.1038/ncb3225
  9. Yao H, Chung S, Hwang JW et al (2012) SIRT1 protects against emphysema via FOXO3-mediated reduction of premature senescence in mice. J Clin Invest 122, 2032-2045 https://doi.org/10.1172/JCI60132
  10. Coppe JP, Desprez PY, Krtolica A and Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5, 99-118 https://doi.org/10.1146/annurev-pathol-121808-102144
  11. Zhu Y, Tchkonia T, Pirtskhalava T et al (2015) The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644-658 https://doi.org/10.1111/acel.12344
  12. Birch J and Gil J (2020) Senescence and the SASP: many therapeutic avenues. Genes Dev 34, 1565-1576 https://doi.org/10.1101/gad.343129.120
  13. Zhang L, Pitcher LE, Prahalad V, Niedernhofer LJ and Robbins PD (2023) Targeting cellular senescence with senotherapeutics: senolytics and senomorphics. FEBS J 290, 1362-1383 https://doi.org/10.1111/febs.16350
  14. Park JJ, Oh K, Lee GW et al (2023) Defining regorafenib as a senomorphic drug: therapeutic potential in the age-related lung disease emphysema. Exp Mol Med 55, 794-805 https://doi.org/10.1038/s12276-023-00966-6
  15. Strumberg D, Scheulen ME, Schultheis B et al (2012) Regorafenib (BAY 73-4506) in advanced colorectal cancer: a phase I study. Br J Cancer 106, 1722-1727 https://doi.org/10.1038/bjc.2012.153
  16. Weng MC, Wang MH, Tsai JJ et al (2018) Regorafenib inhibits tumor progression through suppression of ERK/NF-kappaB activation in hepatocellular carcinoma bearing mice. Biosci Rep 38, BSR20171264
  17. Han KM, Kang RJ, Jeon H et al (2020) Regorafenib regulates AD pathology, neuroinflammation, and dendritic spinogenesis in cells and a mouse model of AD. Cells 9, 1655
  18. Vlahos R and Bozinovski S (2014) Role of alveolar macrophages in chronic obstructive pulmonary disease. Front Immunol 5, 435
  19. Xing Z, Jordana M and Gauldie J (1992) IL-1 beta and IL-6 gene expression in alveolar macrophages: modulation by extracellular matrices. Am J Physiol 262, L600-605 https://doi.org/10.1152/ajplung.1992.262.5.L600
  20. Garner RE, Rubanowice K, Sawyer RT and Hudson JA (1994) Secretion of TNF-alpha by alveolar macrophages in response to Candida albicans mannan. J Leukoc Biol 55, 161-168 https://doi.org/10.1002/jlb.55.2.161
  21. Sawant KV, Xu R, Cox R et al (2015) Chemokine CXCL1-mediated neutrophil trafficking in the lung: role of CXCR2 activation. J Innate Immun 7, 647-658 https://doi.org/10.1159/000430914
  22. Ruwanpura SM, McLeod L, Miller A et al (2011) Interleukin-6 promotes pulmonary emphysema associated with apoptosis in mice. Am J Respir Cell Mol Biol 45, 720-730 https://doi.org/10.1165/rcmb.2010-0462OC
  23. De Filippo K, Henderson RB, Laschinger M and Hogg N (2008) Neutrophil chemokines KC and macrophage-inflammatory protein-2 are newly synthesized by tissue macrophages using distinct TLR signaling pathways. J Immunol 180, 4308-4315 https://doi.org/10.4049/jimmunol.180.6.4308
  24. Semple BD, Kossmann T and Morganti-Kossmann MC (2010) Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR2 and CXCL8/CXCR2 networks. J Cereb Blood Flow Metab 30, 459-473 https://doi.org/10.1038/jcbfm.2009.240
  25. Grunwald B, Schoeps B and Kruger A (2019) Recognizing the molecular multifunctionality and interactome of TIMP-1. Trends Cell Biol 29, 6-19 https://doi.org/10.1016/j.tcb.2018.08.006
  26. Christopoulou ME, Papakonstantinou E and Stolz D (2023) Matrix metalloproteinases in chronic obstructive pulmonary disease. Int J Mol Sci 24, 3786
  27. Liu T, Zhang L, Joo D and Sun SC (2017) NF-kappaB signaling in inflammation. Signal Transduct Target Ther 2, 17023
  28. LaCanna R, Liccardo D, Zhang P et al (2019) Yap/Taz regulate alveolar regeneration and resolution of lung inflammation. J Clin Invest 129, 2107-2122 https://doi.org/10.1172/JCI125014
  29. Wong S, Belvisi MG and Birrell MA (2009) MMP/TIMP expression profiles in distinct lung disease models: implications for possible future therapies. Respir Res 10, 72
  30. Mittal M, Siddiqui MR, Tran K, Reddy SP and Malik AB (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20, 1126-1167 https://doi.org/10.1089/ars.2012.5149
  31. Liang GB and He ZH (2019) Animal models of emphysema. Chin Med J (Engl) 132, 2465-2475 https://doi.org/10.1097/CM9.0000000000000469
  32. Hamakawa H, Bartolak-Suki E, Parameswaran H, Majumdar A, Lutchen KR and Suki B (2011) Structure-function relations in an elastase-induced mouse model of emphysema. Am J Respir Cell Mol Biol 45, 517-524 https://doi.org/10.1165/rcmb.2010-0473OC
  33. Limjunyawong N, Craig JM, Lagasse HA, Scott AL and Mitzner W (2015) Experimental progressive emphysema in BALB/cJ mice as a model for chronic alveolar destruction in humans. Am J Physiol Lung Cell Mol Physiol 309, L662-L676 https://doi.org/10.1152/ajplung.00214.2015