과제정보
This work was supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HR22C1734). H-SY was supported by the Basic Science Research Program, through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT and Future Planning, Republic of Korea (NRF-2023R1A2C3006220).
참고문헌
- Rossing P, Caramori ML, Chan JC et al (2022) KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int 102, S1-S127 https://doi.org/10.1016/j.kint.2022.06.008
- Kovesdy CP (2022) Epidemiology of chronic kidney disease: an update 2022. Kidney Int Suppl (2011) 12, 7-11 https://doi.org/10.1016/j.kisu.2021.11.003
- Hashmi MF, Benjamin O and Lappin SL (2022) End-stage renal disease. StatPearls, Florida, United States
- Hill NR, Fatoba ST, Oke JL et al (2016) Global prevalence of chronic kidney disease-a systematic review and meta-analysis. PloS one 11, e0158765
- Bello AK, Okpechi IG, Osman MA et al (2022) Epidemiology of peritoneal dialysis outcomes. Nat Rev Nephrol 18, 779-793 https://doi.org/10.1038/s41581-022-00623-7
- Hong YA, Ban TH, Kang CY et al (2021) Trends in epidemiologic characteristics of end-stage renal disease from 2019 Korean Renal Data System (KORDS). Kidney Res Clin Pract 40, 52
- Shu X, Lin T, Wang H et al (2022) Diagnosis, prevalence, and mortality of sarcopenia in dialysis patients: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 13, 145-158 https://doi.org/10.1002/jcsm.12890
- Volpi E, Nazemi R and Fujita S (2004) Muscle tissue changes with aging. Curr Opin Clin Nutr Metab Care 7, 405
- Mitchell WK, Williams J, Atherton P, Larvin M, Lund J and Narici M (2012) Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol 3, 260
- Wilkinson DJ, Piasecki M and Atherton PJ (2018) The age-related loss of skeletal muscle mass and function: measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res Rev 47, 123-132 https://doi.org/10.1016/j.arr.2018.07.005
- Kitamura M, Takazono T, Yamaguchi K et al (2021) The impact of muscle mass loss and deteriorating physical function on prognosis in patients receiving hemodialysis. Sci Rep 11, 22290
- Cheng TC, Huang SH, Kao CL and Hsu PC (2022) Muscle wasting in chronic kidney disease: mechanism and clinical implications-a narrative review. Int J Mol Sci 23, 6047
- Wang XH and Mitch WE (2014) Mechanisms of muscle wasting in chronic kidney disease. Nat Rev Nephrol 10, 504-516 https://doi.org/10.1038/nrneph.2014.112
- Balafa O, Halbesma N, Struijk DG, Dekker FW and Krediet RT (2011) Peritoneal albumin and protein losses do not predict outcome in peritoneal dialysis patients. Clin J Am Soc Nephrol 6, 561-566 https://doi.org/10.2215/CJN.05540610
- Wathanavasin W, Banjongjit A, Avihingsanon Y et al (2022) Prevalence of sarcopenia and its impact on cardiovascular events and mortality among dialysis patients: a systematic review and meta-analysis. Nutrients 14, 4077
- Yang L, He Y and Li X (2023) Physical function and all-cause mortality in patients with chronic kidney disease and end-stage renal disease: a systematic review and meta-analysis. Int Urol Nephrol 55, 1219-1228 https://doi.org/10.1007/s11255-022-03397-w
- Rosenberg I (1989) Epidemiologic and methodologic problems in determining nutritional status of older persons (Summary comments). Am J Cli Nutr 50, 1231-1233 https://doi.org/10.1093/ajcn/50.5.1231
- Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing 39, 412-423 https://doi.org/10.1093/ageing/afq034
- Cruz-Jentoft AJ and Sayer AA (2019) Sarcopenia. Lancet 393, 2636-2646 https://doi.org/10.1016/S0140-6736(19)31138-9
- Baek JY, Jung HW, Kim KM et al (2023) Korean working group on sarcopenia guideline: expert consensus on sarcopenia screening and diagnosis by the Korean society of sarcopenia, the Korean society for bone and mineral research, and the Korean geriatrics society. Ann Geriatr Med Res 27, 9-21 https://doi.org/10.4235/agmr.23.0009
- Sabatino A, Broers NJ, Van der Sande FM, Hemmelder MH, Fiaccadori E and Kooman JP (2021) Estimation of muscle mass in the integrated assessment of patients on hemodialysis. Front Nutr 8, 697523
- Chamney PW, Wabel P, Moissl UM et al (2007) A whole-body model to distinguish excess fluid from the hydration of major body tissues. Am J Clin Nutr 85, 80-89 https://doi.org/10.1093/ajcn/85.1.80
- Ikizler TA, Burrowes JD, Byham-Gray LD et al (2020) KDOQI clinical practice guideline for nutrition in CKD: 2020 update. Am J Kidney Dis 76, S1-S107 https://doi.org/10.1053/j.ajkd.2020.05.006
- Kittiskulnam P, Carrero JJ, Chertow GM, Kaysen GA, Delgado C and Johansen KL (2017) Sarcopenia among patients receiving hemodialysis: weighing the evidence. J Cachexia Sarcopenia Muscle 8, 57-68 https://doi.org/10.1002/jcsm.12130
- Sanchez-Tocino ML, Miranda-Serrano B, Lopez-Gonzalez A et al (2022) Sarcopenia and mortality in older hemodialysis patients. Nutrients 14, 2354
- Seto Y, Kimura M, Matsunaga T, Miyasita E and Kanno Y (2022) Long-term body composition changes in patients undergoing hemodialysis: a single-center retrospective study. Ren Replace Ther 8, 1-8 https://doi.org/10.1186/s41100-021-00391-3
- Pellicano R, Strauss BJ, Polkinghorne KR and Kerr PG (2011) Longitudinal body composition changes due to dialysis. Clin J Am Soc Nephrol 6, 1668-1675 https://doi.org/10.2215/CJN.06790810
- John SG, Sigrist MK, Taal MW and McIntyre CW (2013) Natural history of skeletal muscle mass changes in chronic kidney disease stage 4 and 5 patients: an observational study. PloS one 8, e65372
- Silva MZC, Antonio KJ, Reis JMS, Alves LS, Caramori JCT and Vogt BP (2021) Age, diabetes mellitus, and dialysis modality are associated with risk of poor muscle strength and physical function in hemodialysis and peritoneal dialysis patients. Kidney Res Clin Pract 40, 294
- Birajdar N, Anandh U, Premlatha S and Rajeshwari G (2019) Hand grip strength in patients on maintenance hemodialysis: an observational cohort study from India. Indian J Nephrol 29, 393
- Van Loon I, Hamaker ME, Boereboom FT et al (2017) A closer look at the trajectory of physical functioning in chronic hemodialysis. Age Ageing 46, 594-599 https://doi.org/10.1093/ageing/afx006
- Kurella Tamura M, Covinsky KE, Chertow GM, Yaffe K, Landefeld CS and McCulloch CE (2009) Functional status of elderly adults before and after initiation of dialysis. N Engl J Med 361, 1539-1547 https://doi.org/10.1056/NEJMoa0904655
- Delmonico MJ, Harris TB, Visser M et al (2009) Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr 90, 1579-1585 https://doi.org/10.3945/ajcn.2009.28047
- Goodpaster BH, Park SW, Harris TB et al (2006) The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci 61, 1059-1064 https://doi.org/10.1093/gerona/61.10.1059
- Chen X, Han P, Zhang K et al (2023) Physical performance and muscle strength rather than muscle mass are predictor of all-cause mortality in hemodialysis patients. Front Public Health 11,1087248
- Wang XH, Mitch WE and Price SR (2022) Pathophysiological mechanisms leading to muscle loss in chronic kidney disease. Nat Rev Nephrol 18, 138-152 https://doi.org/10.1038/s41581-021-00498-0
- Mitch WE and Goldberg AL (1996) Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N Engl J Med 335, 1897-1905 https://doi.org/10.1056/NEJM199612193352507
- Gomes MD, Lecker SH, Jagoe RT, Navon A and Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A 98, 14440-14445 https://doi.org/10.1073/pnas.251541198
- Bodine SC, Latres E, Baumhueter S et al (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294, 1704-1708 https://doi.org/10.1126/science.1065874
- Du J, Wang X, Miereles C et al (2004) Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 113, 115-123 https://doi.org/10.1172/JCI18330
- Wang K, Liu Q, Tang M et al (2022) Chronic kidney disease-induced muscle atrophy: molecular mechanisms and promising therapies. Biochem Pharmacol 208, 115407
- Spoto B, Pisano A and Zoccali C (2016) Insulin resistance in chronic kidney disease: a systematic review. Am J Physiol Renal Physiol 311, F1087-F1108 https://doi.org/10.1152/ajprenal.00340.2016
- Zhang L, Wang XH, Wang H, Du J and Mitch WE (2010) Satellite cell dysfunction and impaired IGF-1 signaling cause CKD-induced muscle atrophy. J Am Soc Nephrol 21, 419-427 https://doi.org/10.1681/ASN.2009060571
- Ding H, Gao XL, Hirschberg R, Vadgama JV and Kopple JD (1996) Impaired actions of insulin-like growth factor 1 on protein synthesis and degradation in skeletal muscle of rats with chronic renal failure. Evidence for a postreceptor defect. J Clin Invest 97, 1064-1075 https://doi.org/10.1172/JCI118499
- Carrero JJ, Stenvinkel P, Cuppari L et al (2013) Etiology of the protein-energy wasting syndrome in chronic kidney disease: a consensus statement from the International Society of Renal Nutrition and Metabolism (ISRNM). J Ren Nutr 23, 77-90 https://doi.org/10.1053/j.jrn.2013.01.001
- Abrigo J, Elorza AA, Riedel CA et al (2018) Role of oxidative stress as key regulator of muscle wasting during cachexia. Oxid Med Cell Longev 2018, 2063179
- Hyatt H, Deminice R, Yoshihara T and Powers SK (2019) Mitochondrial dysfunction induces muscle atrophy during prolonged inactivity: a review of the causes and effects. Arch Biochem Biophys 662, 49-60 https://doi.org/10.1016/j.abb.2018.11.005
- Mitch WE, Medina R, Grieber S et al (1994) Metabolic acidosis stimulates muscle protein degradation by activating the adenosine triphosphate-dependent pathway involving ubiquitin and proteasomes. J Clin Invest 93, 2127-2133 https://doi.org/10.1172/JCI117208
- Molina P, Carrero JJ, Bover J et al (2017) Vitamin D, a modulator of musculoskeletal health in chronic kidney disease. J Cachexia Sarcopenia Muscle 8, 686-701 https://doi.org/10.1002/jcsm.12218
- Carrero JJ, Qureshi AR, Parini P et al (2009) Low serum testosterone increases mortality risk among male dialysis patients. J Am Soc Nephrol 20, 613-620 https://doi.org/10.1681/ASN.2008060664
- Hu Z, Wang H, Lee IH, Du J and Mitch WE (2009) Endogenous glucocorticoids and impaired insulin signaling are both required to stimulate muscle wasting under pathophysiological conditions in mice. J Clin Invest 119, 3059-3069 https://doi.org/10.1172/JCI38770
- Gungor O, Ulu S, Hasbal NB, Anker SD and Kalantar-Zadeh K (2021) Effects of hormonal changes on sarcopenia in chronic kidney disease: where are we now and what can we do? J Cachexia Sarcopenia Muscle 12, 1380-1392 https://doi.org/10.1002/jcsm.12839
- Gharahdaghi N, Phillips BE, Szewczyk NJ, Smith K, Wilkinson DJ and Atherton PJ (2021) Links between testosterone, oestrogen, and the growth hormone/insulin-like growth factor axis and resistance exercise muscle adaptations. Front Physiol 11, 621226
- Hendriks FK, Smeets JS, Broers NJ et al (2020) End-stage renal disease patients lose a substantial amount of amino acids during hemodialysis. J Nutr 150, 1160-1166 https://doi.org/10.1093/jn/nxaa010
- Ikizler TA, Flakoll PJ, Parker RA and Hakim RM (1994) Amino acid and albumin losses during hemodialysis. Kidney Int 46, 830-837 https://doi.org/10.1038/ki.1994.339
- Popkov VA, Silachev DN, Zalevsky AO, Zorov DB and Plotnikov EY (2019) Mitochondria as a source and a target for uremic toxins. Int J Mol Sci 20, 3094
- Pieniazek A, Bernasinska-Slomczewska J and Gwozdzinski L (2021) Uremic toxins and their relation with oxidative stress induced in patients with CKD. Int J Mol Sci 22, 6196
- Todoriki S, Hosoda Y, Yamamoto T et al (2022) Methylglyoxal induces inflammation, metabolic modulation and oxidative stress in myoblast cells. Toxins (Basel) 14, 263
- Edamatsu T, Fujieda A and Itoh Y (2018) Phenyl sulfate, indoxyl sulfate and p-cresyl sulfate decrease glutathione level to render cells vulnerable to oxidative stress in renal tubular cells. PloS one 13, e0193342
- Bindels LB and Delzenne NM (2013) Muscle wasting: the gut microbiota as a new therapeutic target? Int J Biochem Cell Biol 45, 2186-2190 https://doi.org/10.1016/j.biocel.2013.06.021
- Vaziri ND, Wong J, Pahl M et al (2013) Chronic kidney disease alters intestinal microbial flora. Kidney Int 83, 308-315 https://doi.org/10.1038/ki.2012.345
- Ramezani A and Raj DS (2014) The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol 25, 657-670 https://doi.org/10.1681/ASN.2013080905
- Wang XH (2013) MicroRNA in myogenesis and muscle atrophy. Curr Opin Clin Nutr Metab Care 16, 258
- Pupim LB, Flakoll PJ, Brouillette JR, Levenhagen DK, Hakim RM and Ikizler TA (2002) Intradialytic parenteral nutrition improves protein and energy homeostasis in chronic hemodialysis patients. J Clin Invest 110, 483-492 https://doi.org/10.1172/JCI0215449
- Pupim LB, Majchrzak KM, Flakoll PJ and Ikizler TA (2006) Intradialytic oral nutrition improves protein homeostasis in chronic hemodialysis patients with deranged nutritional status. J Am Soc Nephrol 17, 3149-3157 https://doi.org/10.1681/ASN.2006040413
- Tomayko EJ, Kistler BM, Fitschen PJ and Wilund KR (2015) Intradialytic protein supplementation reduces inflammation and improves physical function in maintenance hemodialysis patients. J Ren Nutr 25, 276-283 https://doi.org/10.1053/j.jrn.2014.10.005
- Matsuzawa R, Yamamoto S, Suzuki Y et al (2021) The effects of amino acid/protein supplementation in patients undergoing hemodialysis: a systematic review and meta-analysis of randomized controlled trials. Clin Nutr ESPEN 44, 114-121 https://doi.org/10.1016/j.clnesp.2021.04.027
- Weiner DE, Tighiouart H, Ladik V, Meyer KB, Zager PG and Johnson DS (2014) Oral intradialytic nutritional supplement use and mortality in hemodialysis patients. Am J Kidney Dis 63, 276-285 https://doi.org/10.1053/j.ajkd.2013.08.007
- Maruyama T, Maruyama N, Higuchi T et al (2019) Efficacy of L-carnitine supplementation for improving lean body mass and physical function in patients on hemodialysis: a randomized controlled trial. Eur J Clin Nutr 73, 293-301 https://doi.org/10.1038/s41430-018-0348-y
- Fitschen PJ, Biruete A, Jeong J and Wilund KR (2017) Efficacy of beta-hydroxy-beta-methylbutyrate supplementation in maintenance hemodialysis patients. Hemodial Int 21, 107-116 https://doi.org/10.1111/hdi.12440
- Ju SH, Lee EJ, Sim BC et al (2023) Leucine-enriched amino acid supplementation and exercise to prevent sarcopenia in patients on hemodialysis: a single-arm pilot study. Front Nutr 10, 1069651
- Shah AP, Kalantar-Zadeh K and Kopple JD (2015) Is there a role for ketoacid supplements in the management of CKD? Am J Kidney Dis 65, 659-673 https://doi.org/10.1053/j.ajkd.2014.09.029
- Garibotto G, Saio M, Aimasso F et al (2021) How to overcome anabolic resistance in dialysis-treated patients? Front Nutr 8, 701386
- Baker LA, March DS, Wilkinson TJ et al (2022) Clinical practice guideline exercise and lifestyle in chronic kidney disease. BMC Nephrol 23, 1-36 https://doi.org/10.1186/s12882-021-02628-z
- Clarkson MJ, Bennett PN, Fraser SF and Warmington SA (2019) Exercise interventions for improving objective physical function in patients with end-stage kidney disease on dialysis: a systematic review and meta-analysis. Am J Physiol Renal Physiol 316, F856-F872 https://doi.org/10.1152/ajprenal.00317.2018
- March DS, Wilkinson TJ, Burnell T et al (2022) The effect of non-pharmacological and pharmacological interventions on measures associated with sarcopenia in end-stage kidney disease: a systematic review and meta-analysis. Nutrients 14, 1817
- Sheng K, Zhang P, Chen L, Cheng J, Wu C and Chen J (2014) Intradialytic exercise in hemodialysis patients: a systematic review and meta-analysis. Am J Nephrol 40, 478-490 https://doi.org/10.1159/000368722
- Hendriks FK, Smeets JS, van der Sande FM, Kooman JP and van Loon LJ (2019) Dietary protein and physical activity interventions to support muscle maintenance in end-stage renal disease patients on hemodialysis. Nutrients 11, 2972
- Young HM, March DS, Graham-Brown MP et al (2018) Effects of intradialytic cycling exercise on exercise capacity, quality of life, physical function and cardiovascular measures in adult haemodialysis patients: a systematic review and meta-analysis. Nephrol Dial Transplant 33, 1436-1445 https://doi.org/10.1093/ndt/gfy045
- Zhao Q, He Y, Wu N et al (2023) Non-pharmacological interventions to improve physical function in patients with end-stage renal disease: a network meta-analysis. Am J Nephrol 54, 35-41 https://doi.org/10.1159/000530219
- Macdonald JH, Marcora SM, Jibani MM, Kumwenda MJ, Ahmed W and Lemmey AB (2007) Nandrolone decanoate as anabolic therapy in chronic kidney disease: a randomized phase II dose-finding study. Nephron Clin Pract 106, c125-c135 https://doi.org/10.1159/000103000
- Johansen KL, Mulligan K and Schambelan M (1999) Anabolic effects of nandrolone decanoate in patients receiving dialysis: a randomized controlled trial. JAMA 281, 1275-1281 https://doi.org/10.1001/jama.281.14.1275
- Supasyndh O, Satirapoj B, Aramwit P et al (2013) Effect of oral anabolic steroid on muscle strength and muscle growth in hemodialysis patients. Clin J Am Soc Nephrol 8, 271-279 https://doi.org/10.2215/CJN.00380112
- Becker C, Lord SR, Studenski SA et al (2015) Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol 3, 948-957 https://doi.org/10.1016/S2213-8587(15)00298-3
- Hung AM, Ellis CD, Shintani A, Booker C and Ikizler TA (2011) IL-1β receptor antagonist reduces inflammation in hemodialysis patients. J Am Soc Nephrol 22, 437-442 https://doi.org/10.1681/ASN.2010070760
- Kittiskulnam P, Srijaruneruang S, Chulakadabba A et al (2020) Impact of serum bicarbonate levels on muscle mass and kidney function in pre-dialysis chronic kidney disease patients. Am J Nephrol 51, 24-34 https://doi.org/10.1159/000504557
- Abramowitz MK, Melamed ML, Bauer C, Raff AC and Hostetter TH (2013) Effects of oral sodium bicarbonate in patients with CKD. Clin J Am Soc Nephrol 8, 714-720 https://doi.org/10.2215/CJN.08340812
- Garibotto G, Barreca A, Russo R et al (1997) Effects of recombinant human growth hormone on muscle protein turnover in malnourished hemodialysis patients. J Clin Invest 99, 97-105 https://doi.org/10.1172/JCI119139
- Hansen T, Gram J, Jensen P et al (2000) Influence of growth hormone on whole body and regional soft tissue composition in adult patients on hemodialysis. A double-blind, randomized, placebo-controlled study. Clin Nephrol 53, 99-107
- Pupim LB, Flakoll PJ, Yu C and Ikizler TA (2005) Recombinant human growth hormone improves muscle amino acid uptake and whole-body protein metabolism in chronic hemodialysis patients. Am J Clin Nutr 82, 1235-1243 https://doi.org/10.1093/ajcn/82.6.1235
- Niemczyk S, Sikorska H, Wiecek A et al (2010) A super-agonist of growth hormone-releasing hormone causes rapid improvement of nutritional status in patients with chronic kidney disease. Kidney Int 77, 450-458 https://doi.org/10.1038/ki.2009.480
- Bajaj M, Baig R, Suraamornkul S et al (2010) Effects of pioglitazone on intramyocellular fat metabolism in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 95, 1916-1923 https://doi.org/10.1210/jc.2009-0911
- Yokota T, Kinugawa S, Hirabayashi K et al (2017) Pioglitazone improves whole-body aerobic capacity and skeletal muscle energy metabolism in patients with metabolic syndrome. J Diabetes Investig 8, 535-541 https://doi.org/10.1111/jdi.12606
- Yen CL, Wu CY, See LC et al (2020) Pioglitazone reduces mortality and adverse events in patients with type 2 diabetes and with advanced chronic kidney disease: national cohort study. Diabetes Care 43, e152-e153 https://doi.org/10.2337/dc20-1584
- Bataille S, Landrier JF, Astier J et al (2016) The "dose-effect" relationship between 25-hydroxyvitamin D and muscle strength in hemodialysis patients favors a normal threshold of 30 ng/mL for plasma 25-hydroxyvitamin D. J Ren Nutr 26, 45-52 https://doi.org/10.1053/j.jrn.2015.08.007
- Wang L, Luo Q, Zhu B and Zhou F (2019) Relation of serum 25-hydroxyvitamin D Status with skeletal muscle mass and grip strength in patients on peritoneal dialysis. J Nutr Sci Vitaminol (Tokyo) 65, 477-482 https://doi.org/10.3177/jnsv.65.477
- Gordon PL, Sakkas GK, Doyle JW, Shubert T and Johansen KL (2007) Relationship between vitamin D and muscle size and strength in patients on hemodialysis. J Ren Nutr 17, 397-407 https://doi.org/10.1053/j.jrn.2007.06.001
- Taskapan H, Baysal O, Karahan D, Durmus B, Altay Z and Ulutas O (2011) Vitamin D and muscle strength, functional ability and balance in peritoneal dialysis patients with vitamin D deficiency. Clin Nephrol 76, 110-116 https://doi.org/10.5414/CN107160
- Ashby DR, Ford HE, Wynne KJ et al (2009) Sustained appetite improvement in malnourished dialysis patients by daily ghrelin treatment. Kidney Int 76, 199-206 https://doi.org/10.1038/ki.2009.114
- Wynne K, Giannitsopoulou K, Small CJ et al (2005) Subcutaneous ghrelin enhances acute food intake in malnourished patients who receive maintenance peritoneal dialysis: a randomized, placebo-controlled trial. J Am Soc Nephrol 16, 2111-2118 https://doi.org/10.1681/ASN.2005010039
- Campbell GA, Patrie JT, Gaylinn BD, Thorner MO and Bolton WK (2018) Oral ghrelin receptor agonist MK0677 increases serum insulin-like growth factor 1 in hemodialysis patients: a randomized blinded study. Nephrol Dial Transplant 33, 523-530
- Monfared A, Heidarzadeh A, Ghaffari M and Akbarpour M (2009) Effect of megestrol acetate on serum albumin level in malnourished dialysis patients. J Ren Nutr 19, 167-171 https://doi.org/10.1053/j.jrn.2008.11.003
- Golebiewska JE, Lichodziejewska-Niemierko M, Aleksandrowicz-Wrona E, Majkowicz M, Lysiak-Szydlowska W and Rutkowski B (2012) Influence of megestrol acetate on nutrition, inflammation and quality of life in dialysis patients. Int Urol Nephrol 44, 1211-1222 https://doi.org/10.1007/s11255-011-0025-8
- Valenzuela PL, Morales JS, Ruilope LM, de la Villa P, Santos-Lozano A and Lucia A (2020) Intradialytic neuromuscular electrical stimulation improves functional capacity and muscle strength in people receiving haemodialysis: a systematic review. J Physiother 66, 89-96 https://doi.org/10.1016/j.jphys.2020.03.006
- Cho YS, Joo SY, Lee EK, Kee YK, Seo CH and Kim DH (2021) Effect of extracorporeal shock wave therapy on muscle mass and function in patients undergoing maintenance hemodialysis: a randomized controlled pilot study. Ultrasound Med Biol 47, 3202-3210 https://doi.org/10.1016/j.ultrasmedbio.2021.07.021
- Dompe C, Moncrieff L, Matys J et al (2020) Photobiomodulation-underlying mechanism and clinical applications. J Clin Med 9, 1724
- Schardong J, Falster M, Sisto IR et al (2021) Photobiomodulation therapy increases functional capacity of patients with chronic kidney failure: randomized controlled trial. Lasers Med Sci 36, 119-129 https://doi.org/10.1007/s10103-020-03020-3
- Macagnan FE, Baroni BM, Cristofoli EZ, Godoy M, Schardong J and Plentz RDM (2019) Acute effect of photobiomodulation therapy on handgrip strength of chronic kidney disease patients during hemodialysis. Lasers Med Sci 34, 835-840 https://doi.org/10.1007/s10103-018-2593-7
- Dienemann T, Ziolkowski SL, Bender S et al (2021) Changes in body composition, muscle strength, and fat distribution following kidney transplantation. Am J Kidney Dis 78, 816-825 https://doi.org/10.1053/j.ajkd.2020.11.032
- Kosoku A, Ishihara T, Iwai T et al (2022) The change in muscle mass among kidney transplant recipients: a prospective cohort study. Transplant Proc 54, 346-350 https://doi.org/10.1016/j.transproceed.2021.08.064
- Moreau K, Desseix A, Germain C et al (2021) Evolution of body composition following successful kidney transplantation is strongly influenced by physical activity: results of the CORPOS study. BMC Nephrol 22, 31
- Deger SM, Hewlett JR, Gamboa J et al (2018) Insulin resistance is a significant determinant of sarcopenia in advanced kidney disease. Am J Physiol Endocrinol Metab 315, E1108-E1120 https://doi.org/10.1152/ajpendo.00070.2018
- Dember LM, Hung A, Mehrotra R et al (2022) A randomized controlled pilot trial of anakinra for hemodialysis inflammation. Kidney Int 102, 1178-1187 https://doi.org/10.1016/j.kint.2022.06.022
- Zanchi A, Tappy L, Le KA et al (2014) Pioglitazone improves fat distribution, the adipokine profile and hepatic insulin sensitivity in non-diabetic end-stage renal disease subjects on maintenance dialysis: a randomized cross-over pilot study. PloS one 9, e109134
- Rattanasompattikul M, Molnar MZ, Lee ML et al (2013) Anti-Inflammatory and Anti-Oxidative Nutrition in Hypoalbuminemic Dialysis Patients (AIONID) study: results of the pilot-feasibility, double-blind, randomized, placebo-controlled trial. J Cachexia Sarcopenia Muscle 4, 247-257 https://doi.org/10.1007/s13539-013-0115-9
- Hung AM, Booker C, Ellis CD et al (2015) Omega-3 fatty acids inhibit the up-regulation of endothelial chemokines in maintenance hemodialysis patients. Nephrol Dial Transplant 30, 266-274 https://doi.org/10.1093/ndt/gfu283