DOI QR코드

DOI QR Code

Characterization of Three Fusarium spp. Causing Wilt Disease of Cannabis sativa L. in Korea

  • Young Mo Koo (Department of Plant Medicals, Andong National University) ;
  • S. M. Ahsan (Department of Plant Medicals, Andong National University) ;
  • Hyong Woo Choi (Department of Plant Medicals, Andong National University)
  • Received : 2023.02.02
  • Accepted : 2023.05.10
  • Published : 2023.06.30

Abstract

In July 2021, wilting symptoms were observed in adult and seedling hemp (Cannabis sativa L. cv. Cherry Blossom) plants grown in a greenhouse. As the disease progressed, yellowing and wilting symptoms on the leaves developed, resulting in whole plant death. In seedling plants, typical damping-off symptoms were observed. To identify the pathogen, the roots of diseased plants were sampled, surface sterilized, and cultured on potato dextrose agar (PDA) media. From the culture, 4 different fungal isolates were recovered and purely cultured. Each fungal isolate showed distinct growth shapes and color development on malt extract agar, oatmeal agar, sabouraud dextrose agar, and PDA media. Microscopic observation and molecular identification using ribosomal DNA internal transcribed spacer sequencing identified them as 3 Fusarium spp. and 1 Thielaviopsis paradoxa. Additional sequencing of elongation factor 1-alpha and b-tubulin regions of 3 Fusarium spp. revealed that 2 of them are Fusarium solani, and the other one is Fusarium proliferatum. To examine which isolate can act as a causal agent of wilt disease of hemp, each isolate was tested for their pathogenicity. In the pathogenicity test, F. solani AMCF1 and AMCF2, and F. proliferatum AMCF3, but not T. paradoxa AMCF4, were able to cause wilting disease in hemp seedlings. Therefore, we report that F. solani AMCF1 and AMCF2, and F. proliferatum AMCF3 as causal agents of Fusarium wilt of hemp plants. To our knowledge, this is the first report of the wilt disease of C. sativa L. caused by Fusarium spp. in Korea.

Keywords

Acknowledgement

This work was supported by the Promotion (No: 1425151434) of Innovative Businesses for Regulation-Free Special Zones funded by the Ministry of SMEs and Startups (MSS, Korea).

References

  1. Su FF, Yang G, Zheng YG. Cultivation and breeding of industrial Cannabis sativa. Zhongguo Zhong Yao Za Zhi. 2022;47(5):1190-1195.
  2. Yeasmin F, Choi HW. Natural salicylates and their roles in human health. Int J Mol Sci. 2020;21(23):9049.
  3. Ahmed ATMF, Islam MZ, Mahmud MS, et al. Hemp as a potential raw material toward a sustainable world: a review. Heliyon. 2022;8(1):e08753.
  4. Rivedal HM, Funke CN, Frost KE. An overview of pathogens associated with biotic stresses in hemp crops in Oregon, 2019 to 2020. Plant Dis. 2022;106(5):1334-1340. https://doi.org/10.1094/PDIS-11-21-2415-SR
  5. Punja ZK. Emerging diseases of Cannabis sativa and sustainable management. Pest Manag Sci. 2021;77(9):3857-3870. https://doi.org/10.1002/ps.6307
  6. Olivain C, Humbert C, Nahalkova J, et al. Colonization of tomato root by pathogenic and nonpathogenic Fusarium oxysporum strains inoculated together and separately into the soil. Appl Environ Microbiol. 2006;72(2):1523-1531. https://doi.org/10.1128/AEM.72.2.1523-1531.2006
  7. Gwinn KD, Hansen Z, Akinrinlola R, et al. Diseases of Cannabis sativa caused by Fusarium. Front Agron. 2022;3:796062.
  8. O'Donnell K. Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex. Mycologia. 2000;92(5):919-938. https://doi.org/10.1080/00275514.2000.12061237
  9. Summerell BA. Resolving Fusarium: current status of the genus. Annu Rev Phytopathol. 2019;57:323-339. https://doi.org/10.1146/annurev-phyto-082718-100204
  10. Crous PW, Lombard L, Sandoval-Denis M, et al. Fusarium: more than a node or a foot-shaped basal cell. Stud Mycol. 2021;98:100116.
  11. Geiser DM, Al-Hatmi AM, Aoki T, et al. Phylogenomic analysis of a 55.1-kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani species complex. Phytopathology. 2021;111(7):1064-1079. https://doi.org/10.1094/PHYTO-08-20-0330-LE
  12. Heo AY, Koo YM, Choi YJ, et al. First report of peach fruit rot caused by Fusarium avenaceum in korea. Res Plant Dis. 2020;26(1):48-52. https://doi.org/10.5423/RPD.2020.26.1.48
  13. Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671-675. https://doi.org/10.1038/nmeth.2089
  14. White TJ, Bruns T, Lee S, et al. . Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York (NY): Academic Press, 1990. p. 315-322
  15. Choi HW, Ahsan SM. Biocontrol activity of Aspergillus terreus ANU-301 against two distinct plant diseases, tomato Fusarium wilt and potato soft rot. Plant Pathol J. 2022;38(1):33-45. https://doi.org/10.5423/PPJ.OA.12.2021.0187
  16. Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547-1549. https://doi.org/10.1093/molbev/msy096
  17. Chehri K, Salleh B, Zakaria L. Morphological and phylogenetic analysis of Fusarium solani species complex in Malaysia. Microb Ecol. 2015;69(3):457-471. https://doi.org/10.1007/s00248-014-0494-2
  18. Han K, Lee H, Park YM, et al. The first report of Fusarium solani causing wilting in Cnidium officinale in Korea. Res Plant Dis. 2021;27(2):76-78. https://doi.org/10.5423/RPD.2021.27.2.76
  19. Kim W, Choi H, Park G, et al. Fusarium wilt of Korean blackberry caused by Fusarium cugenangense. Res Plant Dis. 2021;27(4):187-191. https://doi.org/10.5423/RPD.2021.27.4.187
  20. Moura RD, de Castro LAM, Culik MP, et al. Culture medium for improved production of conidia for identification and systematic studies of Fusarium pathogens. J Microbiol Methods. 2020;173:105915.
  21. Lamichhane JR, Durr C, Schwanck AA, et al. Integrated management of damping-off diseases. A review. Agron Sustain Dev. 2017;37(2):10.
  22. Berg LE, Miller SS, Dornbusch MR, et al. Seed rot and damping-off of alfalfa in Minnesota caused by Pythium and Fusarium species. Plant Dis. 2017;101(11):1860-1867. https://doi.org/10.1094/PDIS-02-17-0185-RE
  23. McNew GL. The nature, origin, and evolution of parasitism. Plant Pathol. 1960;2:19-69.
  24. Agrios GN. . Parasitism and disease development. In: Plant pathology. 5th ed. Burlington (MA): Elsevier Academic Press, 2005. p. 79-103.
  25. Inoue I, Namiki F, Tsuge T. Plant colonization by the vascular wilt fungus Fusarium oxysporum requires FOW1, a gene encoding a mitochondrial protein. Plant Cell. 2002;14(8):1869-1883. https://doi.org/10.1105/tpc.002576
  26. Rodriguez-Molina MC, Medina I, Torres-Vila LM, et al. Vascular colonization patterns in susceptible and resistant tomato cultivars inoculated with Fusarium oxysporum f. sp. lycopersici races 0 and 1. Plant Pathol. 2003;52(2):199-203. https://doi.org/10.1046/j.1365-3059.2003.00810.x
  27. Mary Wanjiru W, Zhensheng K, Buchenauer H. Importance of cell wall degrading enzymes produced by Fusarium graminearum during infection of wheat heads. Eur J Plant Pathol. 2002;108(8):803-810. https://doi.org/10.1023/A:1020847216155
  28. Mandeel QA. Modeling competition for infection sites on roots by nonpathogenic strains of Fusarium oxysporum. Mycopathologia. 2007;163(1):9-20. https://doi.org/10.1007/s11046-006-0080-3
  29. Walter S, Nicholson P, Doohan FM. Action and reaction of host and pathogen during Fusarium head blight disease. New Phytol. 2010;185(1):54-66. https://doi.org/10.1111/j.1469-8137.2009.03041.x
  30. Bishop CD, Cooper RM. An ultrastructural study of root invasion in three vascular wilt diseases. Physiol Plant Pathol. 1983;22(1):15-IN13.
  31. Arif M, Zaidi NW, Haq Q, et al. Morphological and comparative genomic analyses of pathogenic and non-pathogenic Fusarium solani isolated from Dalbergia sissoo. Mol Biol Rep. 2015;42(6):1107-1122. https://doi.org/10.1007/s11033-014-3849-3
  32. Datta J, Lal N. Application of molecular markers for genetic discrimination of Fusarium wilt pathogen races affecting chickpea and pigeonpea in major regions of India. Cell Mol Biol. 2012;58(1):55-65.
  33. Short DP, O'Donnell K, Geiser DM. Clonality, recombination, and hybridization in the plumbing-inhabiting human pathogen Fusarium keratoplasticum inferred from multilocus sequence typing. BMC Evol Biol. 2014;14(1):91.
  34. Dubey SC, Priyanka K, Singh V. Phylogenetic relationship between different race representative populations of Fusarium oxysporum f. sp. ciceris in respect of translation elongation factor-1 α, β-tubulin, and internal transcribed spacer region genes. Arch Microbiol. 2014;196(6):445-452. https://doi.org/10.1007/s00203-014-0976-0
  35. Chang SC, Macedo DP, Souza-Motta CM, et al. Use of molecular markers to compare Fusarium verticillioides pathogenic strains isolated from plants and humans. Genet Mol Res. 2013;12(3):2863-2875. https://doi.org/10.4238/2013.August.12.2
  36. Mirete S, Patino B, Jurado M, et al. Structural variation and dynamics of the nuclear ribosomal intergenic spacer region in key members of the Gibberella fujikuroi species complex. Genome. 2013;56(4):205-213. https://doi.org/10.1139/gen-2013-0008
  37. Moldave K. Eukaryotic protein synthesis. Annu Rev Biochem. 1985;54(1):1109-1149. https://doi.org/10.1146/annurev.bi.54.070185.005333
  38. Kamaishi T, Hashimoto T, Nakamura Y, et al. Complete nucleotide sequences of the genes encoding translation elongation factors 1a and 2 from a microsporidian parasite, Glugea plecoglossi: implications for the deepest branching of eukaryotes. J Biochem. 1996;120(6):1095-1103. https://doi.org/10.1093/oxfordjournals.jbchem.a021527
  39. O'Donnell K, Kistler HC, Cigelnik E, et al. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci U S A. 1998;95(5):2044-2049. https://doi.org/10.1073/pnas.95.5.2044
  40. Roger AJ, Sandblom O, Doolittle WF, et al. An evaluation of elongation factor 1 alpha as a phylogenetic marker for eukaryotes. Mol Biol Evol. 1999;16(2):218-233. https://doi.org/10.1093/oxfordjournals.molbev.a026104
  41. Nogales E. Structural insights into microtubule function. Annu Rev Biochem. 2000;69(1):277-302. https://doi.org/10.1146/annurev.biochem.69.1.277
  42. Tian G, Huang MC, Parvari R, et al. Cryptic out-of-frame translational initiation of TBCE rescues tubulin formation in compound heterozygous HRD. Proc Natl Acad Sci USA. 2006;103(36):13491-13496. https://doi.org/10.1073/pnas.0602798103
  43. Tian G, Huang Y, Rommelaere H, et al. Pathway leading to correctly folded β-tubulin. Cell. 1996;86(2):287-296. https://doi.org/10.1016/S0092-8674(00)80100-2
  44. Mitchison T, Kirschner M. Dynamic instability of microtubule growth. Nature. 1984;312(5991):237-242. https://doi.org/10.1038/312237a0
  45. Walker RA, O'brien ET, Pryer NK, et al. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol. 1988;107(4):1437-1448. https://doi.org/10.1083/jcb.107.4.1437
  46. Zhu Y, Zhang Y, Duan Y, et al. Functional roles of α1-, α2-, β1-, and β2-Tubulins in vegetative growth, microtubule assembly, and sexual reproduction of Fusarium graminearum. Appl Environ Microbiol. 2021;87(20):e00967-e01021. https://doi.org/10.1128/AEM.00967-21
  47. Begerow D, Beate J, Oberwinkler F. Evolutionary relationships among β-tubulin gene sequences of basidiomycetous fungi. Mycol Res. 2004;108(11):1257-1263. https://doi.org/10.1017/S0953756204001066