Acknowledgement
This work was supported by the Promotion (No: 1425151434) of Innovative Businesses for Regulation-Free Special Zones funded by the Ministry of SMEs and Startups (MSS, Korea).
References
- Su FF, Yang G, Zheng YG. Cultivation and breeding of industrial Cannabis sativa. Zhongguo Zhong Yao Za Zhi. 2022;47(5):1190-1195.
- Yeasmin F, Choi HW. Natural salicylates and their roles in human health. Int J Mol Sci. 2020;21(23):9049.
- Ahmed ATMF, Islam MZ, Mahmud MS, et al. Hemp as a potential raw material toward a sustainable world: a review. Heliyon. 2022;8(1):e08753.
- Rivedal HM, Funke CN, Frost KE. An overview of pathogens associated with biotic stresses in hemp crops in Oregon, 2019 to 2020. Plant Dis. 2022;106(5):1334-1340. https://doi.org/10.1094/PDIS-11-21-2415-SR
- Punja ZK. Emerging diseases of Cannabis sativa and sustainable management. Pest Manag Sci. 2021;77(9):3857-3870. https://doi.org/10.1002/ps.6307
- Olivain C, Humbert C, Nahalkova J, et al. Colonization of tomato root by pathogenic and nonpathogenic Fusarium oxysporum strains inoculated together and separately into the soil. Appl Environ Microbiol. 2006;72(2):1523-1531. https://doi.org/10.1128/AEM.72.2.1523-1531.2006
- Gwinn KD, Hansen Z, Akinrinlola R, et al. Diseases of Cannabis sativa caused by Fusarium. Front Agron. 2022;3:796062.
- O'Donnell K. Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex. Mycologia. 2000;92(5):919-938. https://doi.org/10.1080/00275514.2000.12061237
- Summerell BA. Resolving Fusarium: current status of the genus. Annu Rev Phytopathol. 2019;57:323-339. https://doi.org/10.1146/annurev-phyto-082718-100204
- Crous PW, Lombard L, Sandoval-Denis M, et al. Fusarium: more than a node or a foot-shaped basal cell. Stud Mycol. 2021;98:100116.
- Geiser DM, Al-Hatmi AM, Aoki T, et al. Phylogenomic analysis of a 55.1-kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani species complex. Phytopathology. 2021;111(7):1064-1079. https://doi.org/10.1094/PHYTO-08-20-0330-LE
- Heo AY, Koo YM, Choi YJ, et al. First report of peach fruit rot caused by Fusarium avenaceum in korea. Res Plant Dis. 2020;26(1):48-52. https://doi.org/10.5423/RPD.2020.26.1.48
- Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671-675. https://doi.org/10.1038/nmeth.2089
- White TJ, Bruns T, Lee S, et al. . Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York (NY): Academic Press, 1990. p. 315-322
- Choi HW, Ahsan SM. Biocontrol activity of Aspergillus terreus ANU-301 against two distinct plant diseases, tomato Fusarium wilt and potato soft rot. Plant Pathol J. 2022;38(1):33-45. https://doi.org/10.5423/PPJ.OA.12.2021.0187
- Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547-1549. https://doi.org/10.1093/molbev/msy096
- Chehri K, Salleh B, Zakaria L. Morphological and phylogenetic analysis of Fusarium solani species complex in Malaysia. Microb Ecol. 2015;69(3):457-471. https://doi.org/10.1007/s00248-014-0494-2
- Han K, Lee H, Park YM, et al. The first report of Fusarium solani causing wilting in Cnidium officinale in Korea. Res Plant Dis. 2021;27(2):76-78. https://doi.org/10.5423/RPD.2021.27.2.76
- Kim W, Choi H, Park G, et al. Fusarium wilt of Korean blackberry caused by Fusarium cugenangense. Res Plant Dis. 2021;27(4):187-191. https://doi.org/10.5423/RPD.2021.27.4.187
- Moura RD, de Castro LAM, Culik MP, et al. Culture medium for improved production of conidia for identification and systematic studies of Fusarium pathogens. J Microbiol Methods. 2020;173:105915.
- Lamichhane JR, Durr C, Schwanck AA, et al. Integrated management of damping-off diseases. A review. Agron Sustain Dev. 2017;37(2):10.
- Berg LE, Miller SS, Dornbusch MR, et al. Seed rot and damping-off of alfalfa in Minnesota caused by Pythium and Fusarium species. Plant Dis. 2017;101(11):1860-1867. https://doi.org/10.1094/PDIS-02-17-0185-RE
- McNew GL. The nature, origin, and evolution of parasitism. Plant Pathol. 1960;2:19-69.
- Agrios GN. . Parasitism and disease development. In: Plant pathology. 5th ed. Burlington (MA): Elsevier Academic Press, 2005. p. 79-103.
- Inoue I, Namiki F, Tsuge T. Plant colonization by the vascular wilt fungus Fusarium oxysporum requires FOW1, a gene encoding a mitochondrial protein. Plant Cell. 2002;14(8):1869-1883. https://doi.org/10.1105/tpc.002576
- Rodriguez-Molina MC, Medina I, Torres-Vila LM, et al. Vascular colonization patterns in susceptible and resistant tomato cultivars inoculated with Fusarium oxysporum f. sp. lycopersici races 0 and 1. Plant Pathol. 2003;52(2):199-203. https://doi.org/10.1046/j.1365-3059.2003.00810.x
- Mary Wanjiru W, Zhensheng K, Buchenauer H. Importance of cell wall degrading enzymes produced by Fusarium graminearum during infection of wheat heads. Eur J Plant Pathol. 2002;108(8):803-810. https://doi.org/10.1023/A:1020847216155
- Mandeel QA. Modeling competition for infection sites on roots by nonpathogenic strains of Fusarium oxysporum. Mycopathologia. 2007;163(1):9-20. https://doi.org/10.1007/s11046-006-0080-3
- Walter S, Nicholson P, Doohan FM. Action and reaction of host and pathogen during Fusarium head blight disease. New Phytol. 2010;185(1):54-66. https://doi.org/10.1111/j.1469-8137.2009.03041.x
- Bishop CD, Cooper RM. An ultrastructural study of root invasion in three vascular wilt diseases. Physiol Plant Pathol. 1983;22(1):15-IN13.
- Arif M, Zaidi NW, Haq Q, et al. Morphological and comparative genomic analyses of pathogenic and non-pathogenic Fusarium solani isolated from Dalbergia sissoo. Mol Biol Rep. 2015;42(6):1107-1122. https://doi.org/10.1007/s11033-014-3849-3
- Datta J, Lal N. Application of molecular markers for genetic discrimination of Fusarium wilt pathogen races affecting chickpea and pigeonpea in major regions of India. Cell Mol Biol. 2012;58(1):55-65.
- Short DP, O'Donnell K, Geiser DM. Clonality, recombination, and hybridization in the plumbing-inhabiting human pathogen Fusarium keratoplasticum inferred from multilocus sequence typing. BMC Evol Biol. 2014;14(1):91.
- Dubey SC, Priyanka K, Singh V. Phylogenetic relationship between different race representative populations of Fusarium oxysporum f. sp. ciceris in respect of translation elongation factor-1 α, β-tubulin, and internal transcribed spacer region genes. Arch Microbiol. 2014;196(6):445-452. https://doi.org/10.1007/s00203-014-0976-0
- Chang SC, Macedo DP, Souza-Motta CM, et al. Use of molecular markers to compare Fusarium verticillioides pathogenic strains isolated from plants and humans. Genet Mol Res. 2013;12(3):2863-2875. https://doi.org/10.4238/2013.August.12.2
- Mirete S, Patino B, Jurado M, et al. Structural variation and dynamics of the nuclear ribosomal intergenic spacer region in key members of the Gibberella fujikuroi species complex. Genome. 2013;56(4):205-213. https://doi.org/10.1139/gen-2013-0008
- Moldave K. Eukaryotic protein synthesis. Annu Rev Biochem. 1985;54(1):1109-1149. https://doi.org/10.1146/annurev.bi.54.070185.005333
- Kamaishi T, Hashimoto T, Nakamura Y, et al. Complete nucleotide sequences of the genes encoding translation elongation factors 1a and 2 from a microsporidian parasite, Glugea plecoglossi: implications for the deepest branching of eukaryotes. J Biochem. 1996;120(6):1095-1103. https://doi.org/10.1093/oxfordjournals.jbchem.a021527
- O'Donnell K, Kistler HC, Cigelnik E, et al. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci U S A. 1998;95(5):2044-2049. https://doi.org/10.1073/pnas.95.5.2044
- Roger AJ, Sandblom O, Doolittle WF, et al. An evaluation of elongation factor 1 alpha as a phylogenetic marker for eukaryotes. Mol Biol Evol. 1999;16(2):218-233. https://doi.org/10.1093/oxfordjournals.molbev.a026104
- Nogales E. Structural insights into microtubule function. Annu Rev Biochem. 2000;69(1):277-302. https://doi.org/10.1146/annurev.biochem.69.1.277
- Tian G, Huang MC, Parvari R, et al. Cryptic out-of-frame translational initiation of TBCE rescues tubulin formation in compound heterozygous HRD. Proc Natl Acad Sci USA. 2006;103(36):13491-13496. https://doi.org/10.1073/pnas.0602798103
- Tian G, Huang Y, Rommelaere H, et al. Pathway leading to correctly folded β-tubulin. Cell. 1996;86(2):287-296. https://doi.org/10.1016/S0092-8674(00)80100-2
- Mitchison T, Kirschner M. Dynamic instability of microtubule growth. Nature. 1984;312(5991):237-242. https://doi.org/10.1038/312237a0
- Walker RA, O'brien ET, Pryer NK, et al. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol. 1988;107(4):1437-1448. https://doi.org/10.1083/jcb.107.4.1437
- Zhu Y, Zhang Y, Duan Y, et al. Functional roles of α1-, α2-, β1-, and β2-Tubulins in vegetative growth, microtubule assembly, and sexual reproduction of Fusarium graminearum. Appl Environ Microbiol. 2021;87(20):e00967-e01021. https://doi.org/10.1128/AEM.00967-21
- Begerow D, Beate J, Oberwinkler F. Evolutionary relationships among β-tubulin gene sequences of basidiomycetous fungi. Mycol Res. 2004;108(11):1257-1263. https://doi.org/10.1017/S0953756204001066