참고문헌
- Ito K, Matsuyama A. Koji molds for Japanese soy sauce brewing: characteristics and key enzymes. J Fungi. 2021;7(8):658.
- Frisvad JC, Hubka V, Ezekiel CN, et al. Taxonomy of Aspergillus section flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud Mycol. 2019;93:1-63.
- Kim KM, Lim J, Lee JJ, et al. Characterization of Aspergillus sojae isolated from Meju, Korean traditional fermented soybean brick. J Microbiol Biotechnol. 2017;27(2):251-261. https://doi.org/10.4014/jmb.1610.10013
- Klich MA. Identification of common Aspergillus species. Utrecht: Centraalbureau voor Schimmelcultures, 2002.
- Kurtzman CP, Smiley MJ, Robnett CJ, et al. DNA relatedness among wild and domesticated species in the Aspergillus flavus group. Mycologia. 1986;78(6):955-959. https://doi.org/10.1080/00275514.1986.12025355
- Hua SST, Parfitt DE, Sarreal SBL, et al. First report of an atypical new Aspergillus parasiticus isolates with nucleotide insertion in aflR gene resembling to A. sojae. Mycotoxin Res. 2018;34(2):151-157. https://doi.org/10.1007/s12550-018-0309-2
- Takahashi T, Chang P-K, Matsushima K, et al. Nonfunctionality of Aspergillus sojae aflR in a strain of Aspergillus parasiticus with a disrupted aflR gene. Appl Environ Microbiol. 2002;68(8):3737-3743. https://doi.org/10.1128/AEM.68.8.3737-3743.2002
- Watson AJ, Fuller LJ, Jeenes DJ, et al. Homologs of aflatoxin biosynthesis genes and sequence of aflR in Aspergillus oryzae and Aspergillus sojae. Appl Environ Microbiol. 1999;65(1):307-310. https://doi.org/10.1128/AEM.65.1.307-310.1999
- Arias RS, Orner VA, Martinez-Castillo J, et al. Aspergillus section flavi, need for a robust taxonomy. Microbiol Resour Announc. 2021;10(48):e0078421.
- Houbraken J, Visagie CM, Frisvad JC. Recommendations to prevent taxonomic misidentification of genome-sequenced fungal strains. Microbiol Resour Announc. 2021;10(48):e0107420.
- Kim KU, Kim KM, Choi YH, et al. Whole genome analysis of Aspergillus sojae SMF 134 supports its merits as a starter for soybean fermentation. J Microbiol. 2019;57(10):874-883. https://doi.org/10.1007/s12275-019-9152-1
- Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455-477. https://doi.org/10.1089/cmb.2012.0021
- Yu J, Chang P-K, Ehrlich KC, et al. Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol. 2004;70(3):1253-1262. https://doi.org/10.1128/AEM.70.3.1253-1262.2004
- Chang P-K, Horn BW, Dorner JW. Clustered genes involved in cyclopiazonic acid production are next to the aflatoxin biosynthesis gene cluster in Aspergillus flavus. Fungal Genet Biol. 2009;46(2):176-182. https://doi.org/10.1016/j.fgb.2008.11.002
- Sato A, Oshima K, Noguchi H, et al. Draft genome sequencing and comparative analysis of Aspergillus sojae NBRC4239. DNA Res. 2011;18(3):165-176. https://doi.org/10.1093/dnares/dsr009
- Darling AC, Mau B, Blattner FR, et al. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14(7):1394-1403. https://doi.org/10.1101/gr.2289704
- Katoh K, Misawa K, Kuma K, et al. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059-3066. https://doi.org/10.1093/nar/gkf436
- Chang P-K, Chang TD, Katoh K. Deciphering the origin of Aspergillus flavus NRRL21882, the active biocontrol agent of Afla-Guard. Lett Appl Microbiol. 2021;72(5):509-516.
- Ehrlich KC, Yu J, Cotty PJ. Aflatoxin biosynthesis gene clusters and flanking regions. J Appl Microbiol. 2005;99(3):518-527. https://doi.org/10.1111/j.1365-2672.2005.02637.x
- Calvo AM, Bok J, Brooks W, et al. veA is required for toxin and sclerotial production in Aspergillus parasiticus. Appl Environ Microbiol. 2004;70(8):4733-4739. https://doi.org/10.1128/AEM.70.8.4733-4739.2004
- Chang P-K, Scharfenstein LL, Li P, et al. Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production. Fungal Genet Biol. 2013;58-59:71-79. https://doi.org/10.1016/j.fgb.2013.08.009
- Kale SP, Milde L, Trapp MK, et al. Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavus. Fungal Genet Biol. 2008;45(10):1422-1429. https://doi.org/10.1016/j.fgb.2008.06.009
- Yuan XY, Li JY, Zhi QQ, et al. SfgA renders Aspergillus flavus more stable to the external environment. J Fungi. 2022;8(6):638.
- Jorgensen TR. Identification and toxigenic potential of the industrially important fungi, Aspergillus oryzae and Aspergillus sojae. J Food Prot. 2007;70(12):2916-2972. https://doi.org/10.4315/0362-028X-70.12.2916
- Machida M, Yamada O, Gomi K. Genomics of Aspergillus oryzae: learning from the history of koji mold and exploration of its future. DNA Res. 2008;15(4):173-183. https://doi.org/10.1093/dnares/dsn020
- Feng GH, Leonard TJ. Characterization of the polyketide synthase gene (pksL1) required for aflatoxin biosynthesis in Aspergillus parasiticus. J Bacteriol. 1995;177(21):6246-6254. https://doi.org/10.1128/jb.177.21.6246-6254.1995
- Chang P-K, Ehrlich KC, Yu J, et al. Increased expression of Aspergillus parasiticus aflR, encoding a sequence-specific DNA-binding protein, relieves nitrate inhibition of aflatoxin biosynthesis. Appl Environ Microbiol. 1995;61(6):2372-2377. https://doi.org/10.1128/aem.61.6.2372-2377.1995
- Chang P-K, Matsushima K, Takahashi T, et al. Understanding nonaflatoxigenicity of Aspergillus sojae: a windfall of aflatoxin biosynthesis research. Appl Microbiol Biotechnol. 2007;76(5):977-984. https://doi.org/10.1007/s00253-007-1116-4
- Watarai N, Yamamoto N, Sawada K, et al. Evolution of Aspergillus oryzae before and after domestication inferred by large-scale comparative genomic analysis. DNA Res. 2019;26(6):465-472. https://doi.org/10.1093/dnares/dsz024
- Garber NP, Cotty PJ. Aspergillus parasiticus communities associated with sugarcane in the Rio Grande Valley of Texas: implications of global transport and host association within Aspergillus section flavi. Phytopathology. 2014;104(5):462-471. https://doi.org/10.1094/PHYTO-04-13-0108-R
- Faustinelli PC, Wang XM, Palencia ER, et al. Genome sequences of eight Aspergillus flavus spp. and one A. parasiticus sp., isolated from peanut seeds in Georgia. Genome Announc. 2016;4(2):e00278-e00216.
- Zhao G, Yao Y, Hou L, et al. Draft genome sequence of Aspergillus oryzae 100-8, an increased acid protease production strain. Genome Announc. 2014;2(3):e00548-14.
- Zhao G, Yao Y, Qi W, et al. Draft genome sequence of Aspergillus oryzae strain 3.042. Eukaryot Cell. 2012;11(9):1178.
- Chang P-K. Genome-wide nucleotide variation distinguishes Aspergillus flavus from Aspergillus oryzae and helps to reveal origins of atoxigenic A. flavus biocontrol strains. J Appl Microbiol. 2019;127(5):1511-1520. https://doi.org/10.1111/jam.14419
- Pildain MB, Frisvad JC, Vaamonde G, et al. Two novel aflatoxin-producing Aspergillus species from Argentinean peanuts. Int J Syst Evol Microbiol. 2008;58(3):725-735. https://doi.org/10.1099/ijs.0.65123-0
- Linz JE, Wee J, Roze LV. Aspergillus parasiticus SU-1 genome sequence, predicted chromosome structure, and comparative gene expression under aflatoxin-inducing conditions: evidence that differential expression contributes to species phenotype. Eukaryot Cell. 2014;13(8):1113-1123. https://doi.org/10.1128/EC.00108-14
- Kjaerbolling I, Vesth T, Frisvad JC, et al. A comparative genomics study of 23 Aspergillus species from section flavi. Nat Commun. 2020;11(1):1106.
- Steenwyk JL, Shen XX, Lind AL, et al. A robust phylogenomic time tree for biotechnologically and medically important fungi in the genera Aspergillus and Penicillium. mBio. 2019;10(4):e00925-19.