DOI QR코드

DOI QR Code

Neocucurbitaria chlamydospora sp. nov.: A Novel Species of the Family Cucurbitariaceae Isolated from a Stink Bug in Korea

  • Soo-Min Hong (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Kallol Das (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Seong-Keun Lim (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Sang Jae Suh (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Seung-Yeol Lee (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Hee-Young Jung (College of Agriculture and Life Sciences, Kyungpook National University)
  • Received : 2023.01.30
  • Accepted : 2023.03.26
  • Published : 2023.06.30

Abstract

The fungal strain KNUF-22-18B, belonging to Cucurbitariaceae, was discovered from a stink bug (Hygia lativentris) during the investigation of insect microbiota in Chungnam Province, South Korea. The colonies of the strain KNUF-22-18B were wooly floccose, white to brown in the center on oatmeal agar (OA), and the colonies were buff, margin even, and colorless, reverse white to yellowish toward the center on malt extract agar (MEA). The strain KNUF-22-18B produced pycnidia after 60 days of culturing on potato dextrose agar, but pycnidia were not observed on OA. On the contrary, N. keratinophila CBS 121759T abundantly formed superficial pycnidia on OA and MEA after a few days. The strain KNUF-22-18B produced chlamydospores subglobose to globose, mainly in the chain, with a small diameter of 4.4-8.8 ㎛. At the same time, N. keratinophila CBS 121759T displayed a globose terminal with a diameter of 8-10 ㎛. A multilocus phylogeny using the internal transcribed spacer regions, 28S rDNA large subunit, b-tubulin, and RNA polymerase II large subunit genes further validated the uniqueness of the strain. The detailed description and illustration of the proposed species as Neocucurbitaria chlamydospora sp. nov. from Korea was strongly supported by molecular phylogeny.

Keywords

Acknowledgement

This work was supported by a grant from the National Institute of Biological Resources, funded by the Ministry of Environment of the Republic of Korea [NIBR202231206].

References

  1. Winter HG. Pilze. II. Abtheilung. Ascomyceten: Gymnoasceen und Pyrenomyceten. In: Rabenhorst GL, editor. Rabenhorst's Kryptogamen-Flora von Deutschland, Oesterreich und der Schweiz. 2nd ed. Leipzig: Kummer; 1885. p. 65-528.
  2. Hyde KD, Jones EBG, Liu JK, et al. Families of Dothideomycetes. Fungal Divers. 2013;63(1):1-313. https://doi.org/10.1007/s13225-013-0263-4
  3. Doilom M, Liu JK, Jaklitsch WM, et al. An outline of the family Cucurbitariaceae. Sydowia. 2013;65:167-192.
  4. Wanasinghe DN, Phookamsak R, Jeewon R, et al. A family level rDNA based phylogeny of Cucurbitariaceae and Fenestellaceae with descriptions of new Fenestella species and Neocucurbitaria gen. nov. Mycosphere. 2017;8(4):397-414. https://doi.org/10.5943/mycosphere/8/4/2
  5. Valenzuela-Lopez N, Cano-Lira JF, Guarro J, et al. Coelomycetous Dothideomycetes with emphasis on the families Cucurbitariaceae and Didymellaceae. Stud Mycol. 2018;90:1-69. https://doi.org/10.1016/j.simyco.2017.11.003
  6. Boerema GH, Loerakker WM, Hamers ME. Contributions towards a monograph of Phoma (Coelomycetes) - III. 2. Misapplications of the type species name and the generic synonyms of section Plenodomus (excluded species). Persoonia. 1996;16:141-189.
  7. Gurung K, Wertheim B, Falcao Salles J. The microbiome of pest insects: it is not just bacteria. Entomol Exp Appl. 2019;167(3):156-170. https://doi.org/10.1111/eea.12768
  8. Jing TZ, Qi FH, Wang ZY. Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision? Microbiome. 2020;8(1):1-20. https://doi.org/10.1186/s40168-019-0777-4
  9. Yao Z, Ma Q, Cai Z, et al. Similar shift patterns in gut bacterial and fungal communities across the life stages of Bactrocera minax larvae from two field populations. Front Microbiol. 2019;10:2262.
  10. Lu M, Hulcr J, Sun J. The role of symbiotic microbes in insect invasions. Annu Rev Ecol Evol Syst. 2016;47(1):487-505. https://doi.org/10.1146/annurev-ecolsys-121415-032050
  11. McPherson JE, McPherson RM. Stink bugs of economic importance in America North of Mexico. Boca Raton (FL): CRC Press; 2000.
  12. Panizzi AR, Slansky F. Review of phytophagous pentatomids (Hemiptera: Pentatomidae) associated with soybean in the Americas. Fla Entomol. 1985;68(1):184-214. https://doi.org/10.2307/3494344
  13. Todd JW. Ecology and behavior of Nezara viridula. Annu Rev Entomol. 1989;34(1):273-292. https://doi.org/10.1146/annurev.en.34.010189.001421
  14. Das K, Kim JH, Choi KS, et al. A new report of Biscogniauxia petrensis isolated from mosquitoes in Korea. Kor J Mycol. 2020;48:87-93. https://doi.org/10.4489/KJM.20200010
  15. Crous PW, Schumacher RK, Akulov A, et al. New and interesting fungi 2. Fungal Syst Evol. 2019;3:57-134. https://doi.org/10.3114/fuse.2019.03.06
  16. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, et al., editors. PCR protocols: a guide to methods and applications. New York: Academic Press, Inc.; 1990. p. 315-322.
  17. Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2(2):113-118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  18. Vilgalys R, Hester M. Rapid genetic identification, and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172(8):4238-4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  19. Rehner SA, Samuels GJ. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res. 1994;98(6):625-634. https://doi.org/10.1016/S0953-7562(09)80409-7
  20. Woudenberg JHC, Aveskamp MM, de Gruyter J, et al. Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia. 2009;22:56-62. https://doi.org/10.3767/003158509X427808
  21. Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes evidence from an RNA polymerase II subunit. Mol Biol Evol. 1999;16(12):1799-1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
  22. Sung GH, Sung JM, Hywel-Jones NL, et al. A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach. Mol Phylogenet Evol. 2007;44(3):1204-1223. https://doi.org/10.1016/j.ympev.2007.03.011
  23. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16(2):111-120. https://doi.org/10.1007/BF01731581
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406-425.
  25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368-376. https://doi.org/10.1007/BF01734359
  26. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool. 1971;20(4):406-416. https://doi.org/10.2307/2412116
  27. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-1874. https://doi.org/10.1093/molbev/msw054
  28. Verkley GJM, Gene J, Guarro J, et al. Pyrenochaeta keratinophila sp. nov., aislado de una infeccion ocular en Espana. Rev Iberoam Micol. 2010;27(1):22-24. https://doi.org/10.1016/j.riam.2009.09.001
  29. Punithalingam E, English MP. Pyrenochaeta unguis-hominis sp. nov. on human toe-nails. Trans Br Mycol Soc. 1975;64(3):539-541. https://doi.org/10.1016/S0007-1536(75)80163-X
  30. Eo JK, Eom AH. Community of endophytic fungi from alpine conifers on Mt. Seorak. Mycobiology. 2022;50(5):317-325. https://doi.org/10.1080/12298093.2022.2135832
  31. Magana-Duenas V, Stchigel AM, Cano-Lira JF. New coelomycetous fungi from freshwater in Spain. J Fungi. 2021;7(5):368.
  32. Lamsal K, Kim SW, Naeimi S, et al. Three new records of Penicillium species isolated from insect specimens in Korea. Mycobiology. 2013;41(2):116-119. https://doi.org/10.5941/MYCO.2013.41.2.116
  33. Yun TS, Park SY, Yu J, et al. Isolation and identification of fungal species from the insect pest Tribolium castaneum in rice processing complexes in Korea. Plant Pathol J. 2018;34(5):356-366. https://doi.org/10.5423/PPJ.OA.02.2018.0027
  34. Lee JH, Ten LN, Lim SK, et al. Molecular and morphological characteristics of a new species collected from an insect (Cicindela transbaicalica) in Korea. Mycobiology. 2022;50(3):181-187. https://doi.org/10.1080/12298093.2022.2080333
  35. Vanna R, Esther, Das K, Lee S-Y, et al. Molecular and morphological characterization of two novel species from soil and beetles (Dorcus titanus castanicolor) in Korea. Mycobiology. 2022;50(6):429-438. https://doi.org/10.1080/12298093.2022.2149927
  36. Jaklitsch WM, Checa J, Blanco MN, et al. Preliminary account of the Cucurbitariaceae. Stud Mycol. 2018;90:71-118. https://doi.org/10.1016/j.simyco.2017.11.002