DOI QR코드

DOI QR Code

Molecular Phylogeny and Morphology of Tolypocladium globosum sp. nov. Isolated from Soil in Korea

  • Kallol Das (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Jung-Joo Ryu (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Soo-Min Hong (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Seong-Keun Lim (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Seung-Yeol Lee (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Hee-Young Jung (College of Agriculture and Life Sciences, Kyungpook National University)
  • Received : 2023.02.03
  • Accepted : 2023.03.15
  • Published : 2023.04.30

Abstract

In this study, fungal strains designated as KNUF-22-14A and KNUF-22-15A were isolated from soil samples in Korea. These two strains were identified based on cultural and morphological characteristics as well as phylogenetic analyses and were found to be morphologically and phylogenetically identical. Upon their morphological comparison with closely related species, such as Tolypocladium album, T. amazonense, T. endophyticum, T. pustulatum, and T. tropicale, a difference in the size of short phialides [0.6-2.4(-9.3)×0.8-1.4 ㎛] was observed. Meanwhile, these strains had larger conidia (1.2-3.0×1.2-3.0 ㎛) than T. album, T. amazonense, T. endophyticum, and T. tropicale and smaller conidia than T. pustulatum. Phylogenetic analyses using a multi-locus datasets based on ITS, LSU, and SSU showed that KNUF-22-14A and KNUF-22-15A formed a distinct cluster from previously identified Tolypocladium species. Thus, these fungal strains isolated from soil in Korea are proposed as a novel species according to their characteristics and are named Tolypocladium globosum sp. nov.

Keywords

Acknowledgement

This work was supported by a grant from the National Institute of Biological Resources, funded by the Ministry of Environment of the Republic of Korea (NIBR202304104).

References

  1. Sung GH, Poinar GO, Spatafora JW. The oldest fossil evidence of animal parasitism by fungi supports a cretaceous diversification of fungal-arthropod symbioses. Mol Phylogenet Evol. 2008;49(2):495-502. https://doi.org/10.1016/j.ympev.2008.08.028
  2. Gams W. Tolypocladium, eine Hyphomycetengattung mit geschwollenen Phialiden. Persoonia. 1971;6:185-191.
  3. Sung GH, Hywel-Jones NL, Sung JM, et al. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol. 2007;57:5-59. https://doi.org/10.3114/sim.2007.57.01
  4. Quandt CA, Kepler RM, Gams W, et al. Phylogenetic-based nomenclatural proposals for Ophiocordycipitaceae (Hypocreales) with new combinations in Tolypocladium. IMA Fungus. 2014;5(1):121-134. https://doi.org/10.5598/imafungus.2014.05.01.12
  5. Hodge KT, Krasnoff SB, Humber RA. Tolypocladium inflatum is the anamorph of Cordyceps subsessilis. Mycologia. 1996;88(5):715-719. https://doi.org/10.1080/00275514.1996.12026708
  6. Gams W. Chaunopycnis alba, gen. et sp. nov., a soil fungus intermediate between Moniliales and Sphaeropsidales. Persoonia. 1980;11:75-79.
  7. Gazis R, Skaltsas D, Chaverri P. Novel endophytic lineages of Tolypocladium provide new insights into the ecology and evolution of Cordyceps-like fungi. Mycologia. 2014;106(6):1090-1105. https://doi.org/10.3852/13-346
  8. Park S, Ten L, Lee SY, et al. New recorded species in three genera of the Sordariomycetes in Korea. Mycobiology. 2017;45(2):64-72. https://doi.org/10.5941/MYCO.2017.45.2.64
  9. Kubatova A, Cerny M, Novakova A. New records of micromycetes from the Czech Republic. IV. Acrodontium salmoneum, Chaunopycnis alba and Cylindrocarpostylus gregarius, and notes on Dactylaria lanosa and Trichoderma saturnisporum. Czech Mycol. 2002;53(3):237-255. https://doi.org/10.33585/cmy.53308
  10. Bills GF, Polishook JD, Goetz MA, et al. Chaunopycnis pustulata sp. nov., a new clavicipitalean anamorph producing metabolites that modulate potassium ion channels. Mycol Progress. 2002;1(1):3-17. https://doi.org/10.1007/s11557-006-0001-3
  11. Wang Y, Liu YF, Tang DX, et al. Tolypocladium reniformisporum sp. nov. and Tolypocladium cylindrosporum (Ophiocordycipitaceae, Hypocreales) co-occurring on Ophiocordyceps sinensis. Mycol Progress. 2022;21(1):199-214.
  12. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172(8):4238-4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  13. White TJ, Bruns TD, Lee SB, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego (CA): Academic Press; 1990. p. 315-322.
  14. Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2(2):113-118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  15. Wijayawardene NN, Dissanayake LS, Li QR, et al. Yunnan- Guizhou Plateau: a mycological hotspot. Phytotaxa. 2021;523(1):1-31. https://doi.org/10.11646/phytotaxa.523.1.1
  16. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool. 1971;20(4):406-416. https://doi.org/10.2307/2412116
  17. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16(2):111-120. https://doi.org/10.1007/BF01731581
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406-425.
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368-376. https://doi.org/10.1007/BF01734359
  20. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-1874. https://doi.org/10.1093/molbev/msw054
  21. Spatafora JW, Sung GH, Sung JM, et al. Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol Ecol. 2007;16(8):1701-1711. https://doi.org/10.1111/j.1365-294X.2007.03225.x
  22. Weiser J, Matha V. Tolypin, a new insecticidal metabolite of fungi of the genus Tolypocladium. J Invertebr Pathol. 1988;51(1):94-96. https://doi.org/10.1016/0022-2011(88)90093-6
  23. Sedmera P, Havlicek V, Jegorov A, et al. Cyclosporin D hydroperoxide, a new metabolite of Tolypocladium terricola. Tetrahedron Lett. 1995;36:6953-6956.
  24. Bushley KE, Raja R, Jaiswal P, et al. The genome of Tolypocladium inflatum: evolution, organization, and expression of the cyclosporin biosynthetic gene cluster. PLoS Genet. 2013;9(6):e1003496.
  25. Fukuda T, Sudoh Y, Tsuchiya Y, et al. Tolypoalbin, a new tetramic acid from Tolypocladium album TAMA 479. J Antibiot. 2015;68(6):399-402. https://doi.org/10.1038/ja.2014.165
  26. Fukasawa W, Mori N, Iwatsuki M, et al. Tolyprolinol, a new dipeptide from Tolypocladium sp. FKI-7981. J Antibiot. 2018;71:682-684. https://doi.org/10.1038/s41429-018-0041-3
  27. Survase SA, Kagliwal LD, Annapure US, et al. Cyclosporin A - a review on fermentative production, downstream processing and pharmacological applications. Biotechnol Adv. 2011;29(4):418-435. https://doi.org/10.1016/j.biotechadv.2011.03.004
  28. Laupacis A, Keown PA, Ulan RA, et al. Cyclosporin A: a powerful immunosuppressant. Can Med Assoc J. 1982;126:1041-1046.
  29. Wang JC, Zhang ZZ, Li CL, et al. Research progress of Tolypocladium in Ophiocordycipitaceae. J Fungal Res. 2019;8:1-0.
  30. Park JM, Hong JW, Lee W, et al. Fungal clusters and their uniqueness in geographically segregated wetlands: a step forward to marsh conservation for a wealth of future fungal resources. Mycobiology. 2020;48(5):351-363. https://doi.org/10.1080/12298093.2020.1796413
  31. Das K, Lee SY, Jung HY. A new report on three species of sordariomycetes class isolated from soil in Korea. Kor J Mycol. 2017;46:134-144.