DOI QR코드

DOI QR Code

The efficacy of different implant surface decontamination methods using spectrophotometric analysis: an in vitro study

  • Roberto Giffi (Department of Life, Health and Environmental Sciences, University of L'Aquila) ;
  • Davide Pietropaoli (Department of Life, Health and Environmental Sciences, University of L'Aquila) ;
  • Leonardo Mancini (Department of Life, Health and Environmental Sciences, University of L'Aquila) ;
  • Francesco Tarallo (Department of Life, Health and Environmental Sciences, University of L'Aquila) ;
  • Philipp Sahrmann (Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich) ;
  • Enrico Marchetti (Department of Life, Health and Environmental Sciences, University of L'Aquila)
  • Received : 2022.08.12
  • Accepted : 2022.11.08
  • Published : 2023.08.31

Abstract

Purpose: Various methods have been proposed to achieve the nearly complete decontamination of the surface of implants affected by peri-implantitis. We investigated the in vitro debridement efficiency of multiple decontamination methods (Gracey curettes [GC], glycine air-polishing [G-Air], erythritol air-polishing [E-Air] and titanium brushes [TiB]) using a novel spectrophotometric ink-model in 3 different bone defect settings (30°, 60°, and 90°). Methods: Forty-five dental implants were stained with indelible ink and mounted in resin models, which simulated standardised peri-implantitis defects with different bone defect angulations (30°, 60°, and 90°). After each run of instrumentation, the implants were removed from the resin model, and the ink was dissolved in ethanol (97%). A spectrophotometric analysis was performed to detect colour remnants in order to measure the cumulative uncleaned surface area of the implants. Scanning electron microscopy images were taken to assess micromorphological surface changes. Results: Generally, the 60° bone defects were the easiest to debride, and the 30° defects were the most difficult (ink absorption peak: 0.26±0.04 for 60° defects; 0.32±0.06 for 30° defects; 0.27±0.04 for 90° defects). The most effective debridement method was TiB, independently of the bone defect type (TiB vs. GC: P<0.0001; TiB vs. G-Air: P=0.0017; TiB vs. GE-Air: P=0.0007). GE-Air appeared to be the least efficient method for biofilm debridement. Conclusions: T-brushes seem to be a promising decontamination method compared to the other techniques, whereas G-Air was less aggressive on the implant surface. The use of a spectrophotometric model was shown to be a novel but promising assessment method for in vitro ink studies.

Keywords

Acknowledgement

The authors would like to thank Federica Quartullo and Damiano Novello for their help in the development of the initial project.

References

  1. Berglundh T, Armitage G, Araujo MG, Avila-Ortiz G, Blanco J, Camargo PM, et al. Peri-implant diseases and conditions: consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol 2018;45 Suppl 20:S286-91.
  2. Aglietta M, Siciliano VI, Zwahlen M, Bragger U, Pjetursson BE, Lang NP, et al. A systematic review of the survival and complication rates of implant supported fixed dental prostheses with cantilever extensions after an observation period of at least 5 years. Clin Oral Implants Res 2009;20:441-51. https://doi.org/10.1111/j.1600-0501.2009.01706.x
  3. Romandini M, Cordaro M, Donno S, Cordaro L. Discrepancy between patient satisfaction and biologic complication rate in patients rehabilitated with overdentures and not participating in a structured maintenance program after 7 to 12 years of loading. Int J Oral Maxillofac Implants 2019;34:1143-51. https://doi.org/10.11607/jomi.7465
  4. Romandini M, Lima C, Pedrinaci I, Araoz A, Costanza Soldini M, Sanz M. Clinical signs, symptoms, perceptions, and impact on quality of life in patients suffering from peri-implant diseases: a university-representative cross-sectional study. Clin Oral Implants Res 2021;32:100-11. https://doi.org/10.1111/clr.13683
  5. Romandini M, Berglundh J, Derks J, Sanz M, Berglundh T. Diagnosis of peri-implantitis in the absence of baseline data: a diagnostic accuracy study. Clin Oral Implants Res 2021;32:297-313. https://doi.org/10.1111/clr.13700
  6. Mancini L. Peri-implant health and diagnostic considerations. Int J Environ Res Public Health 2022;19:12008.
  7. Berglundh J, Romandini M, Derks J, Sanz M, Berglundh T. Clinical findings and history of bone loss at implant sites. Clin Oral Implants Res 2021;32:314-23. https://doi.org/10.1111/clr.13701
  8. Schmidlin PR, Sahrmann P, Ramel C, Imfeld T, Muller J, Roos M, et al. Peri-implantitis prevalence and treatment in implant-oriented private practices: a cross-sectional postal and Internet survey. Schweiz Monatsschr Zahnmed 2012;122:1136-44.
  9. Heitz-Mayfield LJ, Lang NP. Comparative biology of chronic and aggressive periodontitis vs. peri-implantitis. Periodontol 2000 2010;53:167-81. https://doi.org/10.1111/j.1600-0757.2010.00348.x
  10. Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet 2001;358:135-8. https://doi.org/10.1016/S0140-6736(01)05321-1
  11. Renvert S, Polyzois I, Persson GR. Treatment modalities for peri-implant mucositis and peri-implantitis. Am J Dent 2013;26:313-8.
  12. Lang NP, Salvi GE, Sculean A. Nonsurgical therapy for teeth and implants-When and why? Periodontol 2000 2019;79:15-21. https://doi.org/10.1111/prd.12240
  13. Gianfreda F, Bollero P, Muzzi M, Di Giulio A, Nicolai E, Canullo L. The effects of ultrasonic scaling and air-abrasive powders on the decontamination of 9 implant-abutment surfaces: scanning electron analysis and in vitro study. Dent J 2022;10:36.
  14. Cha JK, Paeng K, Jung UW, Choi SH, Sanz M, Sanz-Martin I. The effect of five mechanical instrumentation protocols on implant surface topography and roughness: a scanning electron microscope and confocal laser scanning microscope analysis. Clin Oral Implants Res 2019;30:578-87. https://doi.org/10.1111/clr.13446
  15. Renvert S, Hirooka H, Polyzois I, Kelekis-Cholakis A, Wang HL; Working Group 3. Diagnosis and non-surgical treatment of peri-implant diseases and maintenance care of patients with dental implants - Consensus report of working group 3. Int Dent J 2019;69 Suppl 2:12-7. https://doi.org/10.1111/idj.12490
  16. Sahrmann P, Ronay V, Sener B, Jung RE, Attin T, Schmidlin PR. Cleaning potential of glycine air-flow application in an in vitro peri-implantitis model. Clin Oral Implants Res 2013;24:666-70. https://doi.org/10.1111/j.1600-0501.2012.02445.x
  17. Matsubara VH, Leong BW, Leong MJ, Lawrence Z, Becker T, Quaranta A. Cleaning potential of different air abrasive powders and their impact on implant surface roughness. Clin Implant Dent Relat Res 2020;22:96-104. https://doi.org/10.1111/cid.12875
  18. Steiger-Ronay V, Merlini A, Wiedemeier DB, Schmidlin PR, Attin T, Sahrmann P. Location of unaccessible implant surface areas during debridement in simulated peri-implantitis therapy. BMC Oral Health 2017;17:137.
  19. Sahrmann P, Ronay V, Hofer D, Attin T, Jung RE, Schmidlin PR. In vitro cleaning potential of three different implant debridement methods. Clin Oral Implants Res 2015;26:314-9. https://doi.org/10.1111/clr.12322
  20. Pathrose B, Nampoori VP, Radhakrishnan P, Mujeeb A. Measurement of absolute fluorescence quantum yield of basic Fuchsin solution using a dual-beam thermal lens technique. J Fluoresc 2014;24:895-8. https://doi.org/10.1007/s10895-014-1369-0
  21. Beard EJ, Sivaraman G, Vazquez-Mayagoitia A, Vishwanath V, Cole JM. Comparative dataset of experimental and computational attributes of UV/vis absorption spectra. Sci Data 2019;6:307.
  22. Berglundh T, Jepsen S, Stadlinger B, Terheyden H. Peri-implantitis and its prevention. Clin Oral Implants Res 2019;30:150-5. https://doi.org/10.1111/clr.13401
  23. Sanz-Martin I, Paeng K, Park H, Cha JK, Jung UW, Sanz M. Significance of implant design on the efficacy of different peri-implantitis decontamination protocols. Clin Oral Investig 2021;25:3589-97. https://doi.org/10.1007/s00784-020-03681-y
  24. Keim D, Nickles K, Dannewitz B, Ratka C, Eickholz P, Petsos H. In vitro efficacy of three different implant surface decontamination methods in three different defect configurations. Clin Oral Implants Res 2019;30:550-8. https://doi.org/10.1111/clr.13441
  25. Ronay V, Merlini A, Attin T, Schmidlin PR, Sahrmann P. In vitro cleaning potential of three implant debridement methods. Simulation of the non-surgical approach. Clin Oral Implants Res 2017;28:151-5. https://doi.org/10.1111/clr.12773
  26. Momber A. Blast cleaning technology. Berlin, Heidelberg: Spring-Verlag; 2008.
  27. Kotsakis GA, Olmedo DG. Peri-implantitis is not periodontitis: Scientific discoveries shed light on microbiome-biomaterial interactions that may determine disease phenotype. Periodontol 2000 2021;86:231-40. https://doi.org/10.1111/prd.12372