Acknowledgement
The authors sincerely appreciate Prof. Hyeon-Su Ro and Dr. Sinil Kim at Gyeongsang National University for providing critical advice on the sequence analysis. The authors also thank Sang-Woo Lee for assisting with PCR amplifications and Sujung Yoo for helping to map the collection sites using QGIS.
References
- Casselton LA. Mate recognition in fungi. Heredity (Edinb). 2002;88(2):142-147. https://doi.org/10.1038/sj.hdy.6800035
- Ni M, Feretzaki M, Sun S, et al. Sex in fungi. Annu Rev Genet. 2011;45:405-430. https://doi.org/10.1146/annurev-genet-110410-132536
- Nieuwenhuis BPS, Billiard S, Vuilleumier S, et al. Evolution of uni- and bifactorial sexual compatibility systems in fungi. Heredity (Edinb). 2013;111(6):445-455. https://doi.org/10.1038/hdy.2013.67
- Royse DJ, Baars J, Tan Q. Current overview of mushroom production in the world. In: Zied DC, Pardo-Gim enez A, editors. Edible and medicinal mushrooms: technology and applications. Hoboken: John Wiley & Sons Ltd; 2017. p. 5-13.
- Bak WC, Park JH, Park YA, et al. Determination of glucan contents in the fruiting bodies and mycelia of Lentinula edodes cultivars. Mycobiology. 2014;42(3):301-304. https://doi.org/10.5941/MYCO.2014.42.3.301
- Gait an-Hernandez R, Lopez-Pena D, Esqueda M, et al. Review of bioactive molecules production, biomass, and basidiomata of shiitake culinary-medicinal mushrooms, Lentinula edodes (Agaricomycetes). Int J Med Mushrooms. 2019;21(9):841-850. https://doi.org/10.1615/IntJMedMushrooms.2019031849
- Shah SK, Walker PA, Moore-Olufemi SD, et al. An evidence-based review of a Lentinula edodes mushroom extract as complementary therapy in the surgical oncology patient. JPEN J Parenter Enteral Nutr. 2011;35(4):449-458. Jul https://doi.org/10.1177/0148607110380684
- Chang S, Miles P. Historical record of the early cultivation of Lentinula in China. Mushroom J Trop. 1987;7:31-37.
- Bohra A, Kilian B, Sivasankar S, et al. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 2022;40(4):412-431. https://doi.org/10.1016/j.tibtech.2021.08.009
- Renzi JP, Coyne CJ, Berger J, et al. How could the use of crop wild relatives in breeding increase the adaptation of crops to marginal environments? Front Plant Sci. 2022;13:886162.
- Wu L, van Peer A, Song W, et al. Cloning of the Lentinula edodes B mating-type locus and identification of the genetic structure controlling B mating. Gene. 2013;531(2):270-278. https://doi.org/10.1016/j.gene.2013.08.090
- Ha BS, Moon YJ, Song Y, et al. Molecular analysis of B mating type diversity in Lentinula edodes. Sci Hortic. 2019;243:55-63.
- Au CH, Wong MC, Bao D, et al. The genetic structure of the A mating-type locus of Lentinula edodes. Gene. 2014;535(2):184-190. https://doi.org/10.1016/j.gene.2013.11.036
- Ha B, Kim S, Kim M, et al. Diversity of A mating type in Lentinula edodes and mating type preference in the cultivated strains. J Microbiol. 2018;56(6):416-425. https://doi.org/10.1007/s12275-018-8030-6
- Banham AH, Asante-Owusu RN, Gottgens B, et al. An N-terminal dimerization domain permits homeodomain proteins to choose compatible partners and initiate sexual development in the mushroom Coprinus cinereus. Plant Cell. 1995;7(6):773-783.
- James TY, Liou SR, Vilgalys R. The genetic structure and diversity of the a and B mating-type genes from the tropical oyster mushroom, Pleurotus djamor. Fungal Genet Biol. 2004;41(8):813-825. https://doi.org/10.1016/j.fgb.2004.04.005
- Wang W, Lian L, Xu P, et al. Advances in understanding mating type gene organization in the mushroom-forming fungus Flammulina velutipes. G3 (Bethesda). 2016;6(11):3635-3645. https://doi.org/10.1534/g3.116.034637
- Park YA, Seo S, Ka KH. Cultural characteristics and morphological comparison of the wild mushroom Lentinula edodes cultivated on sawdust substrate. Kor J Mycol. 2018;46(2):177-185.
- Schneider TD, Stephens RM. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 1990;18(20):6097-6100. https://doi.org/10.1093/nar/18.20.6097
- Crooks GE, Hon G, Chandonia JM, et al. WebLogo: a sequence logo generator. Genome Res. 2004;14(6):1188-1190.
- Stothard P. The sequence manipulation suite: javaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques. 2000;28(6):1102-1104. https://doi.org/10.2144/00286ir01
- Pardo EH, O'Shea SF, Casselton LA. Multiple versions of the A mating type locus of Coprinus cinereus are generated by three paralogous pairs of multiallelic homeobox genes. Genetics. 1996;144(1):87-94. https://doi.org/10.1093/genetics/144.1.87
- Schirawski J, Heinze B, Wagenknecht M, et al. Mating type loci of Sporisorium reilianum: novel pattern with three A and multiple B specificities. Eukaryot Cell. 2005;4(8):1317-1327. https://doi.org/10.1128/EC.4.8.1317-1327.2005
- Gong WB, Liu W, Lu YY, et al. Constructing a new integrated genetic linkage map and mapping quantitative trait loci for vegetative mycelium growth rate in Lentinula edodes. Fungal Biol. 2014;118(3):295-308. https://doi.org/10.1016/j.funbio.2014.01.001
- Gong WB, Li L, Zhou Y, et al. Genetic dissection of fruiting body-related traits using quantitative trait loci mapping in Lentinula edodes. Appl Microbiol Biotechnol. 2016;100(12):5437-5452. https://doi.org/10.1007/s00253-016-7347-5
- Zhang L, Gong W, Li C, et al. RNA-Seq-based high-resolution linkage map reveals the genetic architecture of fruiting body development in shiitake mushroom, Lentinula edodes. Comput Struct Biotechnol J. 2021;19:1641-1653. https://doi.org/10.1016/j.csbj.2021.03.016
- Xiang X, Li C, Li L, et al. Genetic diversity and population structure of Chinese Lentinula edodes revealed by InDel and SSR markers. Mycol Prog. 2016;15:37.
- Lee HY, Moon S, Ro HS, et al. Analysis of genetic diversity and population structure of wild strains and cultivars using genomic SSR markers in Lentinula edodes. Mycobiology. 2020;48(2):115-121. https://doi.org/10.1080/12298093.2020.1727401
- Kurischko C, Schilhabel MB, Kunze I, et al. The MATA locus of the dimorphic yeast Yarrowia lipolytica consists of two divergently oriented genes. Mol Gen Genet. 1999;262(1):180-188. https://doi.org/10.1007/s004380051073
- Balasubramanian B, Lowry CV, Zitomer RS. The Rox1 repressor of the Saccharomyces cerevisiae hypoxic genes is a specific DNA-binding protein with a high-mobility-group motif. Mol Cell Biol. 1993;13(10):6071-6078. https://doi.org/10.1128/MCB.13.10.6071
- Gaur T, Lengner CJ, Hovhannisyan H, et al. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem. 2005;280(39):33132-33140. https://doi.org/10.1074/jbc.M500608200
- Choi H, Kim TH, Yang S, et al. A reciprocal interaction between β-Catenin and osterix in cementogenesis. Sci Rep. 2017;7(1):8160.
- Aras S, Maroun MC, Song Y, et al. Mitochondrial autoimmunity and MNRR1 in breast carcinogenesis. BMC Cancer. 2019;19(1):411.
- Lee SH, Ali A, Ha B, et al. Development of a molecular marker linked to the A4 locus and the structure of HD genes in Pleurotus eryngii. Mycobiology. 2019;47(2):200-206. https://doi.org/10.1080/12298093.2019.1619989